# Table of Contents

About the Hortonworks Hive ODBC Driver .......................................................... 5
Contact Us ............................................................................................................. 6
Windows Driver .................................................................................................... 7
    Installing the Driver on Windows ................................................................... 7
    Creating a Data Source Name ........................................................................ 7
Configuring a DSN-less Connection ................................................................. 10
Configuring Authentication ............................................................................... 12
Configuring Advanced Options ....................................................................... 16
Configuring HTTP Options .............................................................................. 18
Configuring SSL Verification ............................................................................ 19
Configuring Server-Side Properties ................................................................. 19
Configuring the Temporary Table Feature ...................................................... 20
Configuring Logging Options .......................................................................... 21
Installing and Customizing a Tableau TDC File ........................................... 23
Configuring Kerberos Authentication for Windows .................................... 24
Verifying the Version Number ......................................................................... 28
Linux Driver ......................................................................................................... 29
    Linux System Requirements ......................................................................... 29
    Installing the Driver ...................................................................................... 29
    Setting the LD_LIBRARY_PATH Environment Variable on Linux ............... 30
    Verifying the Version Number ..................................................................... 31
Mac OS X Driver .................................................................................................. 32
    Installing the Driver on Mac OS X ............................................................... 32
    Setting the DYLD_LIBRARY_PATH Environment Variable ....................... 32
    Verifying the Version Number ..................................................................... 33
Debian Driver ....................................................................................................... 34
    Installing the Driver on Debian .................................................................... 34
    Setting the LD_LIBRARY_PATH Environment Variable on Debian ............ 35
    Verifying the Version Number ..................................................................... 35
Configuring ODBC Connections for Non-Windows Platforms ...............36
Configuration Files ........................................................................36
Sample Configuration Files ............................................................37
Configuring the Environment .........................................................37
Defining DSNs in odbc.ini ..............................................................38
Specifying ODBC Drivers in odbcinst.ini ......................................40
Configuring Driver Settings in hortonworks.hiveodbc.ini ..................41
Configuring Service Discovery Mode .............................................41
Configuring Authentication ..........................................................42
Configuring SSL Verification .........................................................45
Configuring Server-Side Properties ..............................................46
Configuring Logging Options .......................................................47
Testing the Connection ..................................................................48
Authentication Mechanisms .........................................................51
Using a Connection String ............................................................53
DSN Connection String Example ..................................................53
DSN-less Connection String Examples .........................................53
Features .......................................................................................56
SQL Connector for HiveQL ............................................................56
Data Types ....................................................................................56
Catalog and Schema Support .......................................................58
hive_system Table ........................................................................58
Server-Side Properties .................................................................58
Temporary Tables .........................................................................58
Get Tables With Query ..................................................................60
Active Directory ...........................................................................60
Write-back ....................................................................................60
Dynamic Service Discovery using ZooKeeper ...............................60
Driver Configuration Options .......................................................62
Configuration Options Appearing in the User Interface .................62
Configuration Options Having Only Key Names ..............................83
About the Hortonworks Hive ODBC Driver

The Hortonworks Hive ODBC Driver is used for direct SQL and HiveQL access to Apache Hadoop / Hive distributions, enabling Business Intelligence (BI), analytics, and reporting on Hadoop / Hive-based data. The driver efficiently transforms an application’s SQL query into the equivalent form in HiveQL, which is a subset of SQL-92. If an application is Hive-aware, then the driver is configurable to pass the query through to the database for processing. The driver interrogates Hive to obtain schema information to present to a SQL-based application. Queries, including joins, are translated from SQL to HiveQL. For more information about the differences between HiveQL and SQL, see "SQL Connector for HiveQL" on page 56.

The Hortonworks Hive ODBC Driver complies with the ODBC 3.80 data standard and adds important functionality such as Unicode and 32- and 64-bit support for high-performance computing environments.

ODBC is one of the most established and widely supported APIs for connecting to and working with databases. At the heart of the technology is the ODBC driver, which connects an application to the database. For more information about ODBC, see the Data Access Standards Glossary: http://www.simba.com/resources/data-access-standards-library. For complete information about the ODBC specification, see the ODBC API Reference: http://msdn.microsoft.com/en-us/library/windows/desktop/ms714562(v=vs.85).aspx.

The User Guide is suitable for users who are looking to access data residing within Hive from their desktop environment. Application developers might also find the information helpful. Refer to your application for details on connecting via ODBC.
Contact Us

If you have difficulty using the Hortonworks Hive ODBC Driver, please contact our support staff. We welcome your questions, comments, and feature requests.

Please have a detailed summary of the client and server environment (OS version, patch level, Hadoop distribution version, Hive version, configuration, etc.) ready, before you call or write us. Supplying this information accelerates support.

By telephone:

USA: (855) 8-HORTON

International: (408) 916-4121

On the Internet:

Visit us at www.hortonworks.com
Windows Driver

Installing the Driver on Windows

On 64-bit Windows operating systems, you can execute both 32- and 64-bit applications. However, 64-bit applications must use 64-bit drivers and 32-bit applications must use 32-bit drivers. Make sure that you use the version of the driver matching the bitness of the client application accessing data in Hadoop / Hive:

- HortonworksHiveODBC32.msi for 32-bit applications
- HortonworksHiveODBC64.msi for 64-bit applications

You can install both versions of the driver on the same machine.

You install the Hortonworks Hive ODBC Driver on client machines that access data stored in a Hadoop cluster with the Hive service installed and running. Each machine that you install the driver on must meet the following minimum system requirements:

- One of the following operating systems:
  - Windows Vista, 7, 8, or 10
  - Windows Server 2008 or later
- 100 MB of available disk space

**Important:**

To install the driver, you must have Administrator privileges on the machine.

The driver supports Apache Hive versions 0.11 through 1.2.

**To install the Hortonworks Hive ODBC Driver:**

1. Depending on the bitness of your client application, double-click to run HortonworksHiveODBC32.msi or HortonworksHiveODBC64.msi.

2. Click Next.

3. Select the check box to accept the terms of the License Agreement if you agree, and then click Next.

4. To change the installation location, click Change, then browse to the desired folder, and then click OK. To accept the installation location, click Next.

5. Click Install.

6. When the installation completes, click Finish.

Creating a Data Source Name

Typically, after installing the Hortonworks Hive ODBC Driver, you need to create a Data Source Name (DSN).
Alternatively, for information about DSN-less connections, see "Configuring a DSN-less Connection" on page 10.

**To create a Data Source Name:**

1. Open the ODBC Administrator:
   - If you are using Windows 7 or earlier, click **Start**, then click **All Programs**, then click the **Hortonworks Hive ODBC Driver 2.1** program group corresponding to the bitness of the client application accessing data in Hadoop / Hive, and then click **ODBC Administrator**.
   - Or, if you are using Windows 8 or later, on the Start screen, type **ODBC admin**-istrator, and then click the **ODBC Administrator** search result corresponding to the bitness of the client application accessing data in Hadoop / Hive.

2. In the ODBC Data Source Administrator, click the **Drivers** tab, and then scroll down as needed to confirm that the Hortonworks Hive ODBC Driver appears in the alphabetical list of ODBC drivers that are installed on your system.

3. Choose one:
   - To create a DSN that only the user currently logged into Windows can use, click the **User DSN** tab.
   - Or, to create a DSN that all users who log into Windows can use, click the **System DSN** tab.

**Note:**

It is recommended that you create a System DSN instead of a User DSN. Some applications, such as Sisense, load the data using a different user account, and might not be able to detect User DSNs that are created under another user account.

4. Click **Add**.

5. In the Create New Data Source dialog box, select **Hortonworks Hive ODBC Driver** and then click **Finish**.

6. In the **Data Source Name** field, type a name for your DSN.

7. Optionally, in the **Description** field, type relevant details about the DSN.

8. In the **Hive Server Type** drop-down list, select **Hive Server 1** or **Hive Server 2**.

**Note:**

If you are connecting through Apache ZooKeeper, then **Hive Server 1** is not supported.

9. Choose one:
   - To connect to Hive without using the Apache ZooKeeper service, in the **Service Discovery Mode** drop-down list, select **No Service Discovery**.
   - Or, to enable the driver to discover Hive Server 2 services via the ZooKeeper service, in the **Service Discovery Mode** drop-down list, select **ZooKeeper**.
10. Choose one:
   - If you selected **No Service Discovery** above, then in the **Host(s)** field, type the IP address or host name of the Hive server.
   - Or, if you selected **ZooKeeper** above, then in the **Host(s)** field, type a comma-separated list of ZooKeeper servers. Use the following format, where [ZK_Host] is the IP address or host name of the ZooKeeper server and [ZK_Port] is the number of the TCP port that the ZooKeeper server uses to listen for client connections:

   \[ZK_Host1]:[ZK_Port1],[ZK_Host2]:[ZK_Port2]\]

11. In the **Port** field, if you selected **No Service Discovery** above, then type the number of the TCP port that the Hive server uses to listen for client connections. Otherwise, do not type a value in the field.

12. In the **Database** field, type the name of the database schema to use when a schema is not explicitly specified in a query.

   **Note:**
   You can still issue queries on other schemas by explicitly specifying the schema in the query. To inspect your databases and determine the appropriate schema to use, type the `show databases` command at the Hive command prompt.

13. In the **ZooKeeper Namespace** field, if you selected **ZooKeeper** above, then type the namespace on ZooKeeper under which Hive Server 2 znodes are added. Otherwise, do not type a value in the field.

14. In the **Authentication** area, configure authentication as needed. For more information, see "Configuring Authentication" on page 12.

   **Note:**
   Hive Server 1 does not support authentication. Most default configurations of Hive Server 2 require User Name authentication. To verify the authentication mechanism that you need to use for your connection, check the configuration of your Hadoop / Hive distribution. For more information, see "Authentication Mechanisms" on page 51.

15. Optionally, if the operations against Hive are to be done on behalf of a user that is different than the authenticated user for the connection, type the name of the user to be delegated in the **Delegation UID** field.

   **Note:**
   This option is applicable only when connecting to a Hive Server 2 instance that supports this feature.

16. In the **Thrift Transport** drop-down list, select the transport protocol to use in the Thrift layer.

17. If the Thrift Transport option is set to HTTP, then to configure HTTP options such as custom headers, click **HTTP Options**. For more information, see "Configuring HTTP Options" on page 18.
18. To configure client-server verification over SSL, click **SSL Options**. For more information, see "Configuring SSL Verification" on page 19.

19. To configure advanced driver options, click **Advanced Options**. For more information, see "Configuring Advanced Options" on page 16.

20. To configure server-side properties, click **Advanced Options** and then click **Server Side Properties**. For more information, see "Configuring Server-Side Properties" on page 19.

21. To configure the Temporary Table feature, click **Advanced Options** and then click **Temporary Table Configuration**. For more information, see "Configuring the Temporary Table Feature" on page 20 and "Temporary Tables" on page 58.

   **Important:**
   When connecting to Hive 0.14 or later, the Temporary Tables feature is always enabled and you do not need to configure it in the driver.

22. To configure logging behavior for the driver, click **Logging Options**. For more information, see "Configuring Logging Options" on page 21.

23. To test the connection, click **Test**. Review the results as needed, and then click **OK**.

   **Note:**
   If the connection fails, then confirm that the settings in the Hortonworks Hive ODBC Driver DSN Setup dialog box are correct. Contact your Hive server administrator as needed.

24. To save your settings and close the Hortonworks Hive ODBC Driver DSN Setup dialog box, click **OK**.

25. To close the ODBC Data Source Administrator, click **OK**.

### Configuring a DSN-less Connection

Some client applications provide support for connecting to a data source using a driver without a Data Source Name (DSN). To configure a DSN-less connection, you can use a connection string or the Hortonworks Hive ODBC Driver Configuration tool that is installed with the Hortonworks Hive ODBC Driver. The following section explains how to use the driver configuration tool. For information about using connection strings, see "Using a Connection String" on page 53.

**To configure a DSN-less connection using the driver configuration tool:**

1. Choose one:
   - If you are using Windows 7 or earlier, click **Start** 📲, then click **All Programs**, and then click the **Hortonworks Hive ODBC Driver 2.1** program group corresponding to the bitness of the client application accessing data in Hadoop / Hive.
   - Or, if you are using Windows 8 or later, click the arrow button at the bottom of the Start screen, and then find the **Hortonworks Hive ODBC Driver 2.1**
program group corresponding to the bitness of the client application accessing data in Hadoop / Hive.

2. Click **Driver Configuration**, and then click **OK** if prompted for administrator permission to make modifications to the machine.

   **Note:**
   You must have administrator access to the machine to run this application because it makes changes to the registry.

3. In the **Hive Server Type** drop-down list, select **Hive Server 1** or **Hive Server 2**.

   **Note:**
   If you are connecting through Apache ZooKeeper, then **Hive Server 1** is not supported.

4. Choose one:
   - To connect to Hive without using the Apache ZooKeeper service, in the **Service Discovery Mode** drop-down list, select **No Service Discovery**.
   - Or, to enable the driver to discover Hive Server 2 services via the ZooKeeper service, in the **Service Discovery Mode** drop-down list, select **ZooKeeper**.

5. In the **ZooKeeper Namespace** field, if you selected **ZooKeeper** above, then type the namespace on ZooKeeper under which Hive Server 2 znodes are added. Otherwise, do not type a value in the field.

6. In the Authentication area, configure authentication as needed. For more information, see "Configuring Authentication" on page 12.

   **Note:**
   Hive Server 1 does not support authentication. Most default configurations of Hive Server 2 require User Name authentication. To verify the authentication mechanism that you need to use for your connection, check the configuration of your Hadoop / Hive distribution. For more information, see "Authentication Mechanisms" on page 51.

7. Optionally, if the operations against Hive are to be done on behalf of a user that is different than the authenticated user for the connection, then in the **Delegation UID** field, type the name of the user to be delegated.

   **Note:**
   This option is applicable only when connecting to a Hive Server 2 instance that supports this feature.

8. In the **Thrift Transport** drop-down list, select the transport protocol to use in the Thrift layer.

9. If the Thrift Transport option is set to HTTP, then to configure HTTP options such as custom headers, click **HTTP Options**. For more information, see "Configuring HTTP Options" on page 18.

10. To configure client-server verification over SSL, click **SSL Options**. For more information, see "Configuring SSL Verification" on page 19.
11. To configure advanced options, click Advanced Options. For more information, see "Configuring Advanced Options" on page 16.

12. To configure server-side properties, click Advanced Options and then click Server Side Properties. For more information, see "Configuring Server-Side Properties" on page 19.

13. To configure the Temporary Table feature, click Advanced Options and then click Temporary Table Configuration. For more information, see "Temporary Tables" on page 58 and "Configuring the Temporary Table Feature" on page 20.

   Important:
   When connecting to Hive 0.14 or later, the Temporary Tables feature is always enabled and you do not need to configure it in the driver.

14. To save your settings and close the Hortonworks Hive ODBC Driver Configuration tool, click OK.

Configuring Authentication

Some Hive servers are configured to require authentication for access. To connect to a Hive server, you must configure the Hortonworks Hive ODBC Driver to use the authentication mechanism that matches the access requirements of the server and provides the necessary credentials.

For information about how to determine the type of authentication your Hive server requires, see "Authentication Mechanisms" on page 51.

ODBC applications that connect to Hive Server 2 using a DSN can pass in authentication credentials by defining them in the DSN. To configure authentication for a connection that uses a DSN, use the ODBC Data Source Administrator.

Normally, applications that are not Hive Server 2 aware and that connect using a DSN-less connection do not have a facility for passing authentication credentials to the Hortonworks Hive ODBC Driver for a connection. However, the Hortonworks Hive ODBC Driver Configuration tool enables you to configure authentication without using a DSN.

   Important:
   Credentials defined in a DSN take precedence over credentials configured using the driver configuration tool. Credentials configured using the driver configuration tool apply for all connections that are made using a DSN-less connection unless the client application is Hive Server 2 aware and requests credentials from the user.

Using No Authentication

When connecting to a Hive server of type Hive Server 1, you must use No Authentication. When you use No Authentication, Binary is the only Thrift transport protocol that is supported.
To configure a connection without authentication:

1. Choose one:
   - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click **Configure**.
   - Or, to access authentication options for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool.

2. In the **Mechanism** drop-down list, select **No Authentication**.

3. If the Hive server is configured to use SSL, then click **SSL Options** to configure SSL for the connection. For more information, see "Configuring SSL Verification" on page 19.

4. To save your settings and close the dialog box, click **OK**.

**Example connection string for Hive Server 1:**

Driver=Hortonworks Hive ODBC Driver;Host=hs1_host;
Port=hs1_port;HiveServerType=1;AuthMech=0;Schema=Hive_database

**Example connection string for Hive Server 2:**

Driver=Hortonworks Hive ODBC Driver;Host=hs2_host;
Port=hs2_port;HiveServerType=2;AuthMech=0;Schema=Hive_database

Using Kerberos

Kerberos must be installed and configured before you can use this authentication mechanism. For more information, see "Configuring Kerberos Authentication for Windows" on page 24.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions. When you use Kerberos authentication, the Binary transport protocol is not supported.

To configure Kerberos authentication:

1. Choose one:
   - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click **Configure**.
   - Or, to access authentication options for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool.

2. In the **Mechanism** drop-down list, select **Kerberos**.

3. Choose one:
   - To use the default realm defined in your Kerberos setup, leave the **Realm** field empty.
Or, if your Kerberos setup does not define a default realm or if the realm of your Hive Server 2 host is not the default, then, in the **Realm** field, type the Kerberos realm of the Hive Server 2.

4. In the **Host FQDN** field, type the fully qualified domain name of the Hive Server 2 host.

   **Note:**
   To use the Hive server host name as the fully qualified domain name for Kerberos authentication, in the **Host FQDN** field, type `_HOST`.

5. To allow the driver to pass your credentials directly to the server for use in authentication, set **Delegate Kerberos Credentials**.

6. In the **Service Name** field, type the service name of the Hive server.

7. In the **Thrift Transport** drop-down list, select the transport protocol to use in the Thrift layer.

   **Important:**
   When using this authentication mechanism, the Binary transport protocol is not supported.

8. If the Hive server is configured to use SSL, then click **SSL Options** to configure SSL for the connection. For more information, see "Configuring SSL Verification" on page 19.

9. To save your settings and close the dialog box, click **OK**.

Example connection string:

```
Driver=Hortonworks Hive ODBC Driver;Host=hs2_host;
Port=hs2_port;HiveServerType=2;AuthMech=1;ThriftTransport=SASL;
Schema=Hive_database;KrbRealm=Kerberos_Realm;
KrbHostFQDN=hs2_fully_qualified_domain_name;
KrbServiceName=hs2_service_name
```

**Using User Name**

This authentication mechanism requires a user name but not a password. The user name labels the session, facilitating database tracking.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions. Most default configurations of Hive Server 2 require User Name authentication. When you use User Name authentication, SSL is not supported and SASL is the only Thrift transport protocol available.

**To configure User Name authentication:**

1. Choose one:

   - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click
Configure.

- Or, to access authentication options for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool.

2. In the Mechanism drop-down list, select User Name.
3. In the User Name field, type an appropriate user name for accessing the Hive server.
4. To save your settings and close the dialog box, click OK.

Example connection string:

```plaintext
Driver=Hortonworks Hive ODBC Driver;Host=hs2_host;Port=hs2_port;HiveServerType=2;AuthMech=2;Schema=Hive_database;UID=user_name
```

Using User Name And Password

This authentication mechanism requires a user name and a password.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions.

To configure User Name And Password authentication:

1. Choose one:
   - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click Configure.
   - Or, to access authentication options for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool.

2. In the Mechanism drop-down list, select User Name And Password.
3. In the User Name field, type an appropriate user name for accessing the Hive server.
4. In the Password field, type the password corresponding to the user name you typed above.
5. To save the password, select the Save Password (Encrypted) check box.

   **Important:**
   The password is obscured, that is, not saved in plain text. However, it is still possible for the encrypted password to be copied and used.

6. In the Thrift Transport drop-down list, select the transport protocol to use in the Thrift layer.
7. If the Hive server is configured to use SSL, then click SSL Options to configure SSL for the connection. For more information, see "Configuring SSL Verification" on page 19.
8. To save your settings and close the dialog box, click OK.
Example connection string:
Driver=Hortonworks Hive ODBC Driver;Host=hs2_host;
Port=hs2_port;HiveServerType=2;AuthMech=3;ThriftTransport=SASL;
Schema=Hive_database;UID=user_name;PWD=password

Using Windows Azure HDInsight Service

This authentication mechanism is available only for Hive Server 2 on HDInsight distributions. When you use this authentication mechanism, you must enable SSL and HTTP is the only Thrift transport protocol available.

To configure a connection to a Hive server on Windows Azure HDInsight Service:

1. Choose one:
   - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click Configure.
   - Or, to access authentication options for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool.

2. In the Mechanism drop-down list, select Windows Azure HDInsight Service.

3. In the User Name field, type an appropriate user name for accessing the Hive server.

4. In the Password field, type the password corresponding to the user name you typed above.

5. Click HTTP Options, and in the HTTP Path field, type the partial URL corresponding to the Hive server. Click OK to save your HTTP settings and close the dialog box.
   
   Note:
   If necessary, you can create custom HTTP headers. For more information, see "Configuring HTTP Options" on page 18.

6. Click SSL Options and configure SSL settings as needed. For more information, see "Configuring SSL Verification" on page 19.

7. Click OK to save your SSL configuration and close the dialog box, and then click OK to save your authentication settings and close the dialog box.

Example connection string:
Driver=Hortonworks Hive ODBC Driver;
Host=Azure_HDInsight_Service_host;Port=443;
HiveServerType=2;AuthMech=6;SSL=1;Schema=Hive_database;
UID=user_name;PWD=password;HTTPPath=hs2_HTTP_path

Configuring Advanced Options

You can configure advanced options to modify the behavior of the driver.
To configure advanced options:

1. Choose one:
   - To access advanced options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click Configure, and then click Advanced Options.
   - Or, to access advanced options for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool, and then click Advanced Options.

2. To disable the SQL Connector feature, select the Use Native Query check box.

3. To defer query execution to SQLExecute, select the Fast SQLPrepare check box.

4. To allow driver-wide configurations to take precedence over connection and DSN settings, select the Driver Config Take Precedence check box.

5. To use the asynchronous version of the API call against Hive for executing a query, select the Use Async Exec check box.

   Note:
   This option is applicable only when connecting to a Hive cluster running Hive 0.12.0 or later.

6. To retrieve table names from the database by using the SHOW TABLES query, select the Get Tables With Query check box.

   Note:
   This option is applicable only when connecting to Hive Server 2.

7. To enable the driver to return SQL_WVARCHAR instead of SQL_VARCHAR for STRING and VARCHAR columns, and SQL_WCHAR instead of SQL_CHAR for CHAR columns, select the Unicode SQL Character Types check box.

8. To enable the driver to return the hive_system table for catalog function calls such as SQLTables and SQLColumns, select the Show System Table check box.

9. To handle Kerberos authentication using the SSPI plugin instead of MIT Kerberos by default, select the Use Only SSPI check box.

10. To enable the driver to automatically open a new session when the existing session is no longer valid, select the Invalid Session Auto Recover check box.

   Note:
   This option is applicable only when connecting to Hive Server 2.

11. In the Rows Fetched Per Block field, type the number of rows to be fetched per block.

12. In the Default String Column Length field, type the maximum data length for STRING columns.

13. In the Binary Column Length field, type the maximum data length for BINARY columns.
14. In the **Decimal Column Scale** field, type the maximum number of digits to the right of the decimal point for numeric data types.

15. In the **Async Exec Poll Interval (ms)** field, type the time in milliseconds between each poll for the query execution status.
   
   **Note:**
   This option is applicable only to HDInsight clusters.

16. In the **Socket Timeout** field, type the number of seconds that an operation can remain idle before it is closed.
   
   **Note:**
   This option is applicable only when asynchronous query execution is being used against Hive Server 2 instances.

17. To save your settings and close the Advanced Options dialog box, click **OK**.

**Configuring HTTP Options**

You can configure options such as custom headers when using the HTTP transport protocol in the Thrift layer.

**To configure HTTP options:**

1. Choose one:
   - If you are configuring HTTP for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click **Configure**, and then make sure that the Thrift Transport option is set to **HTTP**.
   - Or, if you are configuring HTTP for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool and then make sure that the Thrift Transport option is set to **HTTP**.

2. To access HTTP options, click **HTTP Options**.
   
   **Note:**
   The HTTP options are available only when the Thrift Transport option is set to HTTP.

3. In the **HTTP Path** field, type the partial URL corresponding to the Hive server.

4. To create a custom HTTP header, click **Add**, then type appropriate values in the **Key** and **Value** fields, and then click **OK**.

5. To edit a custom HTTP header, select the header from the list, then click **Edit**, then update the **Key** and **Value** fields as needed, and then click **OK**.

6. To delete a custom HTTP header, select the header from the list, and then click **Remove**. In the confirmation dialog box, click **Yes**.

7. To save your settings and close the HTTP Options dialog box, click **OK**.
Configuring SSL Verification

If you are connecting to a Hive server that has Secure Sockets Layer (SSL) enabled, you can configure verification between the client and the Hive server over SSL.

To configure SSL verification:

1. Choose one:
   - To access SSL options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click Configure, and then click SSL Options.
   - Or, to access advanced options for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool, and then click SSL Options.

2. Select the Enable SSL check box.

3. To allow self-signed certificates from the server, select the Allow Self-signed Server Certificate check box.

4. To allow the common name of a CA-issued SSL certificate to not match the host name of the Hive server, select the Allow Common Name Host Name Mismatch check box.

5. Choose one:
   - To configure the driver to load SSL certificates from a specific PEM file when verifying the server, specify the full path to the file in the Trusted Certificates field.
   - Or, to use the trusted CA certificates PEM file that is installed with the driver, leave the Trusted Certificates field empty.

6. To configure two-way SSL verification, select the Two Way SSL check box and then do the following:
   a. In the Client Certificate File field, specify the full path of the PEM file containing the client's certificate.
   b. In the Client Private Key File field, specify the full path of the file containing the client's private key.
   c. If the private key file is protected with a password, type the password in the Client Private Key Password field. To save the password, select the Save Password (Encrypted) check box.

   Important:
   The password is obscured, that is, not saved in plain text. However, it is still possible for the encrypted password to be copied and used.

7. To save your settings and close the SSL Options dialog box, click OK.

Configuring Server-Side Properties

You can use the driver to apply configuration properties to the Hive server.
To configure server-side properties:

1. Choose one:
   - To configure server-side properties for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click **Configure**, then click **Advanced Options**, and then click **Server Side Properties**.
   - Or, to configure server-side properties for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool, then click **Advanced Options**, and then click **Server Side Properties**.

2. To create a server-side property, click **Add**, then type appropriate values in the **Key** and **Value** fields, and then click **OK**. For example, to set the value of the `mapreduce.job.queuename` property to `myQueue`, type `mapreduce.job.queuename` in the **Key** field and then type `myQueue` in the **Value** field.

   **Note:**
   For a list of all Hadoop and Hive server-side properties that your implementation supports, type `set -v` at the Hive CLI command line or Beeline. You can also execute the `set -v` query after connecting using the driver.

3. To edit a server-side property, select the property from the list, then click **Edit**, then update the **Key** and **Value** fields as needed, and then click **OK**.

4. To delete a server-side property, select the property from the list, and then click **Remove**. In the confirmation dialog box, click **Yes**.

5. To change the method that the driver uses to apply server-side properties, do one of the following:
   - To configure the driver to apply each server-side property by executing a query when opening a session to the Hive server, select the **Apply Server Side Properties With Queries** check box.
   - Or, to configure the driver to use a more efficient method for applying server-side properties that does not involve additional network round-tripping, clear the **Apply Server Side Properties With Queries** check box.

   **Note:**
   The more efficient method is not available for Hive Server 1, and it might not be compatible with some Hive Server 2 builds. If the server-side properties do not take effect when the check box is clear, then select the check box.

6. To configure the driver to convert server-side property key names to all lower-case characters, select the **Convert Key Name To Lower Case** check box.

7. To save your settings and close the Server Side Properties dialog box, click **OK**.

**Configuring the Temporary Table Feature**

You can configure the driver to create temporary tables. For more information about this feature, including details about the statement syntax used for temporary tables, see "Temporary Tables" on page 58.
Important:
When connecting to Hive 0.14 or later, the Temporary Tables feature is always enabled and you do not need to configure it in the driver.

To configure the Temporary Table feature:

1. Choose one:
   - To configure the temporary table feature for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN and click **Configure**, then click **Advanced Options**, and then click **Temporary Table Configuration**.
   - Or, to configure the temporary table feature for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool, then click **Advanced Options**, and then click **Temporary Table Configuration**.

2. To enable the Temporary Table feature, select the **Enable Temporary Table** check box.

3. In the **Web HDFS Host** field, type the host name or IP address of the machine hosting both the namenode of your Hadoop cluster and the WebHDFS service. If this field is left blank, then the host name of the Hive server is used.

4. In the **Web HDFS Port** field, type the WebHDFS port for the namenode.

5. In the **HDFS User** field, type the name of the HDFS user that the driver uses to create the necessary files for supporting the Temporary Table feature.

6. In the **Data File HDFS Dir** field, type the HDFS directory that the driver uses to store the necessary files for supporting the Temporary Table feature.

   **Note:**
   Due to a known issue in Hive (see https://issues.apache.org/jira/browse/HIVE-4554), HDFS paths with space characters do not work with versions of Hive prior to 0.12.0.

7. In the **Temp Table TTL** field, type the number of minutes that a temporary table is guaranteed to exist in Hive after it is created.

8. To save your settings and close the Temporary Table Configuration dialog box, click **OK**.

**Configuring Logging Options**

To help troubleshoot issues, you can enable logging. In addition to functionality provided in the Hortonworks Hive ODBC Driver, the ODBC Data Source Administrator provides tracing functionality.

**Important:**
Only enable logging or tracing long enough to capture an issue. Logging or tracing decreases performance and can consume a large quantity of disk space.
The driver allows you to set the amount of detail included in log files. The following table lists the logging levels provided by the Hortonworks Hive ODBC Driver, in order from least verbose to most verbose.

<table>
<thead>
<tr>
<th>Logging Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Disables all logging.</td>
</tr>
<tr>
<td>FATAL</td>
<td>Logs severe error events that lead the driver to abort.</td>
</tr>
<tr>
<td>ERROR</td>
<td>Logs error events that might allow the driver to continue running.</td>
</tr>
<tr>
<td>WARNING</td>
<td>Logs potentially harmful situations.</td>
</tr>
<tr>
<td>INFO</td>
<td>Logs general information that describes the progress of the driver.</td>
</tr>
<tr>
<td>DEBUG</td>
<td>Logs detailed information that is useful for debugging the driver.</td>
</tr>
<tr>
<td>TRACE</td>
<td>Logs all driver activity.</td>
</tr>
</tbody>
</table>

To enable driver logging:

1. To access logging options, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click **Configure**, and then click **Logging Options**.
2. From the **Log Level** drop-down list, select the desired level of information to include in log files.
3. In the **Log Path** field, specify the full path to the folder where you want to save log files.
4. If requested by Technical Support, type the name of the component for which to log messages in the **Log Namespace** field. Otherwise, do not type a value in the field.
5. In the **Max Number Files** field, type the maximum number of log files to keep.
   
   **Note:**
   After the maximum number of log files is reached, each time an additional file is created, the driver deletes the oldest log file.
6. In the **Max File Size** field, type the maximum size of each log file in megabytes (MB).
   
   **Note:**
   After the maximum file size is reached, the driver creates a new file and continues logging.
7. Click **OK**.
8. Restart your ODBC application to make sure that the new settings take effect.
The Hortonworks Hive ODBC Driver produces a log file named HiveODBC_driver.log at the location that you specify in the Log Path field.

To disable driver logging:
1. Open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click Configure, and then click Logging Options.
2. From the Log Level drop-down list, select LOG_OFF.
3. Click OK.

To start tracing using the ODBC Data Source Administrator:
1. In the ODBC Data Source Administrator, click the Tracing tab.
2. In the Log File Path area, click Browse. In the Select ODBC Log File dialog box, browse to the location where you want to save the log file, then type a descriptive file name in the File Name field, and then click Save.
3. On the Tracing tab, click Start Tracing Now.

To stop ODBC Data Source Administrator tracing:
> On the Tracing tab in the ODBC Data Source Administrator, click Stop Tracing Now.

For more information about tracing using the ODBC Data Source Administrator, see "How to Generate an ODBC Trace with ODBC Data Source Administrator" on the Microsoft Support website: http://support.microsoft.com/kb/274551.

Installing and Customizing a Tableau TDC File

A Tableau Data-connection Customization (TDC) file helps configure Tableau to operate more efficiently using the Hortonworks Hive ODBC Driver.

Important:
Make sure that your TDC file contains the following lines:

```xml
<vendor name='Hive' />
<driver name='Hortonworks Hive ODBC Driver' />
```

To install a .TDC file:
1. Copy the TDC file to the Documents\My Tableau Repository\DataSources directory.
2. Restart Tableau.

For detailed information about customizing your TDC file, see "Customizing and Tuning ODBC Connections" in the Tableau Knowledge Base: http://kb.tableau.com/articles/knowledgebase/customizing-odbc-connections.

**Configuring Kerberos Authentication for Windows**

**Active Directory**

The Hortonworks Hive ODBC Driver supports Active Directory Kerberos on Windows. There are two prerequisites for using Active Directory Kerberos on Windows:

- MIT Kerberos is not installed on the client Windows machine.
- The MIT Kerberos Hadoop realm has been configured to trust the Active Directory realm so that users in the Active Directory realm can access services in the MIT Kerberos Hadoop realm. For more information, see "Setting up One-Way Trust with Active Directory" in the Hortonworks documentation: http://docs.hortonworks.com/HDPDocuments/HDP-2.1.7/bk_installing_manually_book/content/ch23s05.html.

**MIT Kerberos**

**Downloading and Installing MIT Kerberos for Windows 4.0.1**

For information about Kerberos and download links for the installer, see the MIT Kerberos website: http://web.mit.edu/kerberos/.

**To download and install MIT Kerberos for Windows 4.0.1:**

1. Download the appropriate Kerberos installer:
   - For a 64-bit machine, use the following download link from the MIT Kerberos website: http://web.mit.edu/kerberos/dist/kfw/4.0/kfw-4.0.1-amd64.msi.
   - For a 32-bit machine, use the following download link from the MIT Kerberos website: http://web.mit.edu/kerberos/dist/kfw/4.0/kfw-4.0.1-i386.msi.

   **Note:**
   - The 64-bit installer includes both 32-bit and 64-bit libraries. The 32-bit installer includes 32-bit libraries only.

2. To run the installer, double-click the .msi file that you downloaded above.
3. Follow the instructions in the installer to complete the installation process.
4. When the installation completes, click Finish.

**Setting Up the Kerberos Configuration File**

Settings for Kerberos are specified through a configuration file. You can set up the configuration file as an .ini file in the default location, which is the C:\ProgramData\MIT\Kerberos5 directory, or as a .conf file in a custom location.
Normally, the C:\ProgramData\MIT\Kerberos5 directory is hidden. For information about viewing and using this hidden directory, refer to Microsoft Windows documentation.

Note:
For more information on configuring Kerberos, refer to the MIT Kerberos documentation.

To set up the Kerberos configuration file in the default location:

1. Obtain a krb5.conf configuration file. You can obtain this file from your Kerberos administrator, or from the /etc/krb5.conf folder on the machine that is hosting the Hive Server 2 instance.
2. Rename the configuration file from krb5.conf to krb5.ini.
3. Copy the krb5.ini file to the C:\ProgramData\MIT\Kerberos5 directory and overwrite the empty sample file.

To set up the Kerberos configuration file in a custom location:

1. Obtain a krb5.conf configuration file. You can obtain this file from your Kerberos administrator, or from the /etc/krb5.conf folder on the machine that is hosting the Hive Server 2 instance.
2. Place the krb5.conf file in an accessible directory and make note of the full path name.
3. Open the System window:
   - If you are using Windows 7 or earlier, click Start, then right-click Computer, and then click Properties.
   - Or, if you are using Windows 8 or later, right-click This PC on the Start screen, and then click Properties.
4. Click Advanced System Settings.
5. In the System Properties dialog box, click the Advanced tab and then click Environment Variables.
6. In the Environment Variables dialog box, under the System Variables list, click New.
7. In the New System Variable dialog box, in the Variable Name field, type KRB5_CONFIG.
8. In the Variable Value field, type the full path to the krb5.conf file.
9. Click OK to save the new variable.
10. Make sure that the variable is listed in the System Variables list.
11. Click OK to close the Environment Variables dialog box, and then click OK to close the System Properties dialog box.

Setting Up the Kerberos Credential Cache File

Kerberos uses a credential cache to store and manage credentials.
To set up the Kerberos credential cache file:

1. Create a directory where you want to save the Kerberos credential cache file. For example, create a directory named C:\temp.
2. Open the System window:
   - If you are using Windows 7 or earlier, click Start, then right-click Computer, and then click Properties.
   - Or, if you are using Windows 8 or later, right-click This PC on the Start screen, and then click Properties.
3. Click Advanced System Settings.
4. In the System Properties dialog box, click the Advanced tab and then click Environment Variables.
5. In the Environment Variables dialog box, under the System Variables list, click New.
6. In the New System Variable dialog box, in the Variable Name field, type KRB5CCNAME.
7. In the Variable Value field, type the path to the folder you created above, and then append the file name krb5cache. For example, if you created the folder C:\temp, then type C:\temp\krb5cache.
   
   **Note:**
   krb5cache is a file (not a directory) that is managed by the Kerberos software, and it should not be created by the user. If you receive a permission error when you first use Kerberos, make sure that the krb5cache file does not already exist as a file or a directory.
8. Click OK to save the new variable.
9. Make sure that the variable appears in the System Variables list.
10. Click OK to close the Environment Variables dialog box, and then click OK to close the System Properties dialog box.
11. To make sure that Kerberos uses the new settings, restart your machine.

Obtaining a Ticket for a Kerberos Principal

A principal refers to a user or service that can authenticate to Kerberos. To authenticate to Kerberos, a principal must obtain a ticket by using a password or a keytab file. You can specify a keytab file to use, or use the default keytab file of your Kerberos configuration.

**To obtain a ticket for a Kerberos principal using a password:**

1. Open MIT Kerberos Ticket Manager.
2. In MIT Kerberos Ticket Manager, click Get Ticket.
3. In the Get Ticket dialog box, type your principal name and password, and then click OK.
If the authentication succeeds, then your ticket information appears in MIT Kerberos Ticket Manager.

To obtain a ticket for a Kerberos principal using a keytab file:

1. Open a command prompt:
   - If you are using Windows 7 or earlier, click Start, then click All Programs, then click Accessories, and then click Command Prompt.
   - If you are using Windows 8 or later, click the arrow button at the bottom of the Start screen, then find the Windows System program group, and then click Command Prompt.

2. In the Command Prompt, type a command using the following syntax:

   \[ \text{kinit -k -t [KeytabPath] [Principal]} \]

   - \[KeytabPath\] is the full path to the keytab file. For example: C:\mykeytabs\myUser.keytab.
   - \[Principal\] is the Kerberos user principal to use for authentication. For example: myUser@EXAMPLE.COM.

3. If the cache location KRB5CCNAME is not set or used, then use the \(-c\) option of the kinit command to specify the location of the credential cache. In the command, the \(-c\) argument must appear last. For example:

   \[ \text{kinit -k -t C:\mykeytabs\myUser.keytab myUser@EXAMPLE.COM -c C:\ProgramData\MIT\krbcache} \]

   Krbcache is the Kerberos cache file, not a directory.

To obtain a ticket for a Kerberos principal using the default keytab file:

**Note:**
For information about configuring a default keytab file for your Kerberos configuration, refer to the MIT Kerberos documentation.

1. Open a command prompt:
   - If you are using Windows 7 or earlier, click Start, then click All Programs, then click Accessories, and then click Command Prompt.
   - If you are using Windows 8 or later, click the arrow button at the bottom of the Start screen, then find the Windows System program group, and then click Command Prompt.

2. In the Command Prompt, type a command using the following syntax:

   \[ \text{kinit -k [principal]} \]

   - \[principal\] is the Kerberos user principal to use for authentication. For example: MyUser@EXAMPLE.COM.
3. If the cache location KRB5CCNAME is not set or used, then use the -c option of the 
kinit command to specify the location of the credential cache. In the command, the -c argument must appear last. For example:

```
  kinit -k -t C:\mykeytabs\myUser.keytab myUser@EXAMPLE.COM
  -c C:\ProgramData\MIT\krbcache
```

Krbcache is the Kerberos cache file, not a directory.

**Verifying the Version Number**

If you need to verify the version of the Hortonworks Hive ODBC Driver that is installed on your Windows machine, you can find the version number in the ODBC Data Source Administrator.

**To verify the version number:**

1. Open the ODBC Administrator:
   - If you are using Windows 7 or earlier, click Start ☰, then click All Programs, then click the Hortonworks Hive ODBC Driver 2.1 program group corresponding to the bitness of the client application accessing data in Hive, and then click ODBC Administrator.
   - Or, if you are using Windows 8 or later, on the Start screen, type ODBC administrator, and then click the ODBC Administrator search result corresponding to the bitness of the client application accessing data in Hive.

2. Click the Drivers tab and then find the Hortonworks Hive ODBC Driver in the list of ODBC drivers that are installed on your system. The version number is displayed in the Version column.
Linux Driver

Linux System Requirements

You install the Hortonworks Hive ODBC Driver on client machines that access data stored in a Hadoop cluster with the Hive service installed and running. Each machine that you install the driver on must meet the following minimum system requirements:

- One of the following distributions:
  - Red Hat® Enterprise Linux® (RHEL) 5, 6, or 7
  - CentOS 5, 6, or 7
  - SUSE Linux Enterprise Server (SLES) 11 or 12
- 150 MB of available disk space
- One of the following ODBC driver managers installed:
  - iODBC 3.52.7 or later
  - unixODBC 2.2.14 or later

The driver supports Apache Hive versions 0.11 through 1.2.

Installing the Driver

There are two versions of the driver for Linux:

- `hive-odbc-native-32bit-[Version]-[Release].[LinuxDistro].i686.rpm` for the 32-bit driver
- `hive-odbc-native-[Version]-[Release].[LinuxDistro].x86_64.rpm` for the 64-bit driver

`[Version]` is the version number of the driver, and `[Release]` is the release number for this version of the driver. `[LinuxDistro]` is either `el5` or `el6`. For SUSE, the `[LinuxDistro]` placeholder is empty.

The bitness of the driver that you select should match the bitness of the client application accessing your Hadoop / Hive-based data. For example, if the client application is 64-bit, then you should install the 64-bit driver. Note that 64-bit editions of Linux support both 32- and 64-bit applications. Verify the bitness of your intended application and install the appropriate version of the driver.

Important:
Make sure that you install the driver using the RPM corresponding to your Linux distribution.

The Hortonworks Hive ODBC Driver files are installed in the following directories:

- `/usr/lib/hive/lib/native/hiveodbc` contains release notes, the Hortonworks Hive ODBC Driver User Guide in PDF format, and a Readme.txt file that provides
plain text installation and configuration instructions.

- /usr/lib/hive/lib/native/hiveodbc/ErrorMessage contains error message files required by the driver.
- /usr/lib/hive/lib/native/Linux-amd64-64 contains the 64-bit driver and the hortonworks.hiveodbc.ini configuration file.

To install the Hortonworks Hive ODBC Driver:

1. Choose one:
   1. In Red Hat Enterprise Linux or CentOS, log in as the root user, then navigate to the folder containing the driver RPM packages to install, and then type the following at the command line, where [RPMFileName] is the file name of the RPM package containing the version of the driver that you want to install:

      ```
      yum --nogpgcheck localinstall [RPMFileName]
      ```

   2. Or, in SUSE Linux Enterprise Server, log in as the root user, then navigate to the folder containing the driver RPM packages to install, and then type the following at the command line, where [RPMFileName] is the file name of the RPM package containing the version of the driver that you want to install:

      ```
      zypper install [RPMFileName]
      ```

The Hortonworks Hive ODBC Driver depends on the following resources:

- cyrus-sasl-2.1.22-7 or later
- cyrus-sasl-gssapi-2.1.22-7 or later
- cyrus-sasl-plain-2.1.22-7 or later

If the package manager in your Linux distribution cannot resolve the dependencies automatically when installing the driver, then download and manually install the packages required by the version of the driver that you want to install.

**Setting the LD_LIBRARY_PATH Environment Variable on Linux**

The LD_LIBRARY_PATH environment variable must include the paths to the installed ODBC driver manager libraries.

For example, if ODBC driver manager libraries are installed in /usr/local/lib, then set LD_LIBRARY_PATH as follows:

```bash
export LD_LIBRARY_PATH=$LD_LIBRARY PATH:/usr/local/lib
```
For information about how to set environment variables permanently, refer to your Linux shell documentation.

For information about creating ODBC connections using the Hortonworks Hive ODBC Driver, see "Configuring ODBC Connections for Non-Windows Platforms" on page 36.

Verifying the Version Number

If you need to verify the version of the Hortonworks Hive ODBC Driver that is installed on your Linux machine, you can query the version number through the command-line interface.

To verify the version number:

- Depending on your version of Linux, at the command prompt, run one of the following commands:
  - `yum list | grep hive-odbc-native`
  - `rpm -qa | grep hive-odbc-native`

The command returns information about the Hortonworks Hive ODBC Driver that is installed on your machine, including the version number.
Mac OS X Driver

Installing the Driver on Mac OS X

The Hortonworks Hive ODBC Driver supports both 32- and 64-bit client applications.

You install the Hortonworks Hive ODBC Driver on client machines that access data stored in a Hadoop cluster with the Hive service installed and running. Each machine that you install the driver on must meet the following minimum system requirements:

- Mac OS X version 10.9, 10.10, or 10.11
- 100 MB of available disk space
- iODBC 3.52.7 or later

The driver supports Apache Hive versions 0.11 through 1.2.

The Hortonworks Hive ODBC Driver files are installed in the following directories:

- /opt/hortonworks/hiveodbc/ErrorMessages contains error message files required by the driver.
- /opt/hortonworks/hiveodbc/Setup contains sample configuration files named odbc.ini and odbcinst.ini.
- /opt/hortonworks/hiveodbc/lib contains the driver binaries and the hortonworks.hiveodbc.ini configuration file.

To install the Hortonworks Hive ODBC Driver:

1. Double-click hive-odbc-native.dmg to mount the disk image.
2. Double-click hive-odbc-native.pkg to run the installer.
3. In the installer, click Continue.
4. On the Software License Agreement screen, click Continue, and when the prompt appears, click Agree if you agree to the terms of the License Agreement.
5. Optionally, to change the installation location, click Change Install Location, then select the desired location, and then click Continue.
6. To accept the installation location and begin the installation, click Install.
7. When the installation completes, click Close.

Setting the DYLD_LIBRARY_PATH Environment Variable

The DYLD_LIBRARY_PATH environment variable must include the paths to the installed ODBC driver manager libraries.
For example, if ODBC driver manager libraries are installed in /usr/local/lib, then set
DYLD_LIBRARY_PATH as follows:

```
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/usr/local/lib
```

For information about how to set environment variables permanently, refer to your Mac OS
X shell documentation.

For information about creating ODBC connections using the Hortonworks Hive ODBC
Driver, see "Configuring ODBC Connections for Non-Windows Platforms" on page 36.

**Verifying the Version Number**

If you need to verify the version of the Hortonworks Hive ODBC Driver that is installed on
your Mac OS X machine, you can query the version number through the Terminal.

**To verify the version number:**

- At the Terminal, run the following command:

```
pkgutil --info com.hortonworks.hiveodbc
```

The command returns information about the Hortonworks Hive ODBC Driver that is installed
on your machine, including the version number.
Debian Driver

Installing the Driver on Debian

You install the Hortonworks Hive ODBC Driver on client machines that access data stored in a Hadoop cluster with the Hive service installed and running. Each machine that you install the driver on must meet the following minimum system requirements:

- Debian 6 or 7 (Ubuntu 12.04 LTS and Ubuntu 14.04 LTS)
- 150 MB of available disk space
- One of the following ODBC driver managers installed:
  - iODBC 3.52.7 or later
  - unixODBC 2.2.14 or later

The driver supports Apache Hive versions 0.11 through 1.2. It supports both 32- and 64-bit client applications.

There are two versions of the driver for Debian:

- hive-odbc-native-32bit-[Version]-[Release]_i386.deb for the 32-bit driver
- hive-odbc-native-[Version]-[Release]_amd64.deb for the 64-bit driver

[Version] is the version number of the driver, and [Release] is the release number for this version of the driver.

The bitness of the driver that you select should match the bitness of the client application accessing your Hadoop / Hive-based data. For example, if the client application is 64-bit, then you should install the 64-bit driver. Note that 64-bit editions of Debian support both 32- and 64-bit applications. Verify the bitness of your intended application and install the appropriate version of the driver.

The Hortonworks Hive ODBC Driver driver files are installed in the following directories:

- /usr/lib/hive/lib/native/hiveodbc/ErrorMessages contains error message files required by the driver.
- /usr/lib/hive/lib/native/Linux-amd64-64 contains the 64-bit driver and the hortonworks.hiveodbc.ini configuration file.
To install the Hortonworks Hive ODBC Driver:

1. In Ubuntu, log in as the root user, then navigate to the folder containing the driver Debian packages to install, and double-click `hive-odbc-native-32bit-Version-Release_i386.deb` or `hive-odbc-native-Version-Release_amd64.deb`.

2. Follow the instructions in the installer to complete the installation process.

The Hortonworks Hive ODBC Driver depends on the following resources:

- `cyrus-sasl-2.1.22-7` or above
- `cyrus-sasl-gssapi-2.1.22-7` or above
- `cyrus-sasl-plain-2.1.22-7` or above

If the package manager in your Ubuntu distribution cannot resolve the dependencies automatically when installing the driver, then download and manually install the packages required by the version of the driver that you want to install.

### Setting the LD_LIBRARY_PATH Environment Variable on Debian

The `LD_LIBRARY_PATH` environment variable must include the path to the installed ODBC driver manager libraries.

For example, if ODBC driver manager libraries are installed in `/usr/local/lib`, then set `LD_LIBRARY_PATH` as follows:

```
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib
```

For information about how to set environment variables permanently, refer to your Ubuntu shell documentation.

For information about creating ODBC connections using the Hortonworks Hive ODBC Driver, see "Configuring ODBC Connections for Non-Windows Platforms" on page 36.

### Verifying the Version Number

If you need to verify the version of the Hortonworks Hive ODBC Driver that is installed on your Debian machine, you can query the version number through the command-line interface.

**To verify the version number:**

- At the command prompt, run the following command:

  ```
  dpkg -l | grep hive-odbc-native
  ```

The command returns information about the Hortonworks Hive ODBC Driver that is installed on your machine, including the version number.
Configuring ODBC Connections for Non-Windows Platforms

The following sections describe how to configure ODBC connections when using the Hortonworks Hive ODBC Driver with non-Windows platforms:

- "Configuration Files" on page 36
- "Sample Configuration Files" on page 37
- "Configuring the Environment" on page 37
- "Defining DSNs in odbc.ini" on page 38
- "Specifying ODBC Drivers in odbcinst.ini" on page 40
- "Configuring Driver Settings in hortonworks.hiveodbc.ini" on page 41
- "Configuring Service Discovery Mode" on page 41
- "Configuring Authentication" on page 42
- "Configuring SSL Verification" on page 45
- "Configuring Server-Side Properties" on page 46
- "Configuring Logging Options" on page 47
- "Testing the Connection" on page 48

Configuration Files

ODBC driver managers use configuration files to define and configure ODBC data sources and drivers. By default, the following configuration files are used:

- odbc.ini is used to define ODBC data sources, and it is required for DSNs.
- odbcinst.ini is used to define ODBC drivers, and it is optional.

These files are located in the user's home directory.

Also, by default the Hortonworks Hive ODBC Driver is configured using the hortonworks.hiveodbc.ini file. This file is located in one of the following directories depending on the version of the driver that you are using:

- /usr/lib/hive/lib/native/Linux-amd64-64 for the 64-bit driver on Linux/Debian.
- /opt/hortonworks/hiveodbc/lib/universal for the driver on Mac OS X.

The hortonworks.hiveodbc.ini file is required.

Note:
The `hortonworks.hiveodbc.ini` file provides default settings for most configuration options available in the Hortonworks Hive ODBC Driver.

You can set driver configuration options in your `odbc.ini` and `hortonworks.hiveodbc.ini` files. Configuration options set in a `hortonworks.hiveodbc.ini` file apply to all connections, whereas configuration options set in an `odbc.ini` file are specific to a connection. Configuration options set in `odbc.ini` take precedence over configuration options set in `hortonworks.hiveodbc.ini`. For information about the configuration options available for controlling the behavior of DSNs that are using the Hortonworks Hive ODBC Driver, see "Driver Configuration Options" on page 62.

**Sample Configuration Files**

The driver installation contains the following sample configuration files in the Setup directory:

- `odbc.ini`
- `odbcinst.ini`

These sample configuration files provide preset values for settings related to the Hortonworks Hive ODBC Driver.

The names of the sample configuration files do not begin with a period (.) so that they appear in directory listings by default. A file name beginning with a period (.) is hidden. For `odbc.ini` and `odbcinst.ini`, if the default location is used, then the file names must begin with a period (.)

If the configuration files do not exist in the home directory, then you can copy the sample configuration files to the home directory, and then rename the files. If the configuration files already exist in the home directory, then use the sample configuration files as a guide to modify the existing configuration files.

**Configuring the Environment**

Optionally, you can use three environment variables, `ODBCINI`, `ODBCSYSINI`, and `HORTONWORKSHORTONWORKSHIVEODBCINI`, to specify different locations for the `odbc.ini`, `odbcinst.ini`, and `hortonworks.hiveodbc.ini` configuration files by doing the following:

- Set `ODBCINI` to point to your `odbc.ini` file.
- Set `ODBCSYSINI` to point to the directory containing the `odbcinst.ini` file.
- Set `HORTONWORKSHORTONWORKSHIVEODBCINI` to point to your `hortonworks.hiveodbc.ini` file.

For example, if your `odbc.ini` and `hortonworks.hiveodbc.ini` files are located in `/etc` and your `odbcinst.ini` file is located in `/usr/local/odbc`, then set the environment variables as follows:
The following search order is used to locate the `hortonworks.hiveodbc.ini` file:

1. If the `HORTONWORKSHORTONWORKSHIVEODBCINI` environment variable is defined, then the driver searches for the file specified by the environment variable.
   
   **Note:**
   HORTONWORKSHORTONWORKSHIVEODBCINI must specify the full path, including the file name.

2. The directory containing the driver’s binary is searched for a file named `hortonworks.hiveodbc.ini` (not beginning with a period).

3. The current working directory of the application is searched for a file named `hortonworks.hiveodbc.ini` (not beginning with a period).

4. The directory `~`, that is, $HOME, is searched for a hidden file named `hortonworks.hiveodbc.ini` (beginning with a period).

5. The directory `/etc` is searched for a file named `hortonworks.hiveodbc.ini` (not beginning with a period).

**Defining DSNs in odbc.ini**

**Note:**
If you are using a DSN-less connection, then you do not need to configure the `odbc.ini` file. For information about configuring a DSN-less connection, see "Using a Connection String" on page 53.

ODBC Data Source Names (DSNs) are defined in the `odbc.ini` configuration file. This file is divided into several sections:

- `[ODBC]` is optional. This section is used to control global ODBC configuration, such as ODBC tracing.

- `[ODBC Data Sources]` is required. This section lists the DSNs and associates them with a driver.

- A section having the same name as the data source specified in the `[ODBC Data Sources]` section is required to configure the data source.

The following is an example of an `odbc.ini` configuration file for Linux/Debian:

```
[ODBC]
InstallDir=/usr/local/odbc

[ODBC Data Sources]
```
Hortonworks Hive DSN 32=Hortonworks Hive ODBC Driver 32-bit

[Hortonworks Hive DSN 32]

Driver=/usr/lib/hive/lib/native/Linux-i386-32/libhortonworkshiveodbc32.so
HOST=[MyHiveServer]
PORT=10000

[MyHiveServer] is the IP address or host name of the Hive server.

The following is an example of an odbc.ini configuration file for Mac OS X:

[ODBC]

InstallDir=/usr/local/odbc

[ODBC Data Sources]

Hortonworks Hive DSN=Hortonworks Hive ODBC Driver

[Hortonworks Hive DSN]

Driver=/opt/hortonworks/hiveodbc/lib/universal/libhortonworkshiveodbc.dylib
HOST=[MyHiveServer]
PORT=10000

[MyHiveServer] is the IP address or host name of the Hive server.

To create a Data Source Name:

1. In a text editor, open the odbc.ini configuration file.
2. In the [ODBC Data Sources] section, add a new entry by typing the Data Source Name (DSN), then an equal sign (=), and then the driver name.
3. Add a new section to the file, with a section name that matches the DSN you specified above, and then add configuration options to the section. Specify the configuration options as key-value pairs.

   **Note:**
   Hive Server 1 does not support authentication. Most default configurations of Hive Server 2 require User Name authentication, which you configure by setting the AuthMech key to 2. To verify the authentication mechanism that you need to use for your connection, check the configuration of your Hadoop / Hive distribution. For more information, see "Authentication Mechanisms" on page 51.
4. Save the odbc.ini configuration file.
For information about the configuration options available for controlling the behavior of DSNs that are using the Hortonworks Hive ODBC Driver, see "Driver Configuration Options" on page 62.

**Specifying ODBC Drivers in odbcinst.ini**

ODBC drivers are defined in the `odbcinst.ini` configuration file. This configuration file is optional because drivers can be specified directly in the `odbc.ini` configuration file, as described in "Defining DSNs in odbc.ini" on page 38.

The `odbcinst.ini` file is divided into the following sections:
- `[ODBC Drivers]` lists the names of all the installed ODBC drivers.
- For each driver, a section having the same name as the driver name specified in the `[ODBC Drivers]` section lists the driver attributes and values.

The following is an example of an `odbcinst.ini` configuration file for Linux/Debian:

```
[ODBC Drivers]
Hortonworks Hive ODBC Driver 32-bit=Installed
Hortonworks Hive ODBC Driver 64-bit=Installed

[Hortonworks Hive ODBC Driver 32-bit]
Description=Hortonworks Hive ODBC Driver (32-bit)
Driver=/usr/lib/hiveodbc/lib/native/Linux-i386-32/libhortonworkshiveodbc32.so

[Hortonworks Hive ODBC Driver 64-bit]
Description=Hortonworks Hive ODBC Driver (64-bit)
Driver=/opt/hortonworks/hiveodbc/lib/universal/libhortonworkshiveodbc.dylib
```

The following is an example of an `odbcinst.ini` configuration file for Mac OS X:

```
[ODBC Drivers]
Hortonworks Hive ODBC Driver=Installed

[Hortonworks Hive ODBC Driver]
Description=Hortonworks Hive ODBC Driver
Driver=/opt/hortonworks/hiveodbc/lib/universal/libhortonworkshiveodbc.dylib
```
To define a driver:

1. In a text editor, open the odbcinst.ini configuration file.
2. In the [ODBC Drivers] section, add a new entry by typing the driver name and then typing =Installed.
   
   **Note:**
   Give the driver a symbolic name that you want to use to refer to the driver in connection strings or DSNs.
3. Add a new section to the file with a name that matches the driver name you typed above, and then add configuration options to the section based on the sample odbcinst.ini file provided in the Setup directory. Specify the configuration options as key-value pairs.
4. Save the odbcinst.ini configuration file.

**Configuring Driver Settings in hortonworks.hiveodbc.ini**

The hortonworks.hiveodbc.ini file contains configuration settings for the Hortonworks Hive ODBC Driver. Settings that you define in this file apply to all connections that use the driver.

You do not need to modify the settings in the hortonworks.hiveodbc.ini file to use the driver and connect to your data source.

However, to help troubleshoot issues, you can configure the hortonworks.hiveodbc.ini file to enable logging in the driver. For information about configuring logging, see "Configuring Logging Options" on page 47.

**Configuring Service Discovery Mode**

You can configure the Hortonworks Hive ODBC Driver to discover Hive Server 2 services via ZooKeeper.

To enable service discovery via ZooKeeper:

1. Open the odbc.ini configuration file in a text editor.
2. Set the ServiceDiscoveryMode connection attribute to 1.
3. Set the ZKNamespace connection attribute to specify the namespace on ZooKeeper under which Hive Server 2 znodes are added.
4. Set the Host connection attribute to specify the ZooKeeper ensemble as a comma-separated list of ZooKeeper servers. For example, type the following, where [ZK_Host] is the IP address or host name of the ZooKeeper server and [ZK_Port] is the number of the TCP port that the ZooKeeper server uses to listen for client connections:

   \[ZK_Host1]:[ZK_Port1],[ZK_Host2]:[ZK_Port2]\]
Important:
When ServiceDiscoveryMode is set to 1, connections to Hive Server 1 are not supported and the Port connection attribute is not applicable.

5. Save the odbc.ini configuration file.

Depending on whether service discovery mode is enabled or disabled, you might need to provide different connection attributes or values in your connection string or DSN. For more information about connection attributes, see "Driver Configuration Options" on page 62.

Configuring Authentication

Some Hive servers are configured to require authentication for access. To connect to a Hive server, you must configure the Hortonworks Hive ODBC Driver to use the authentication mechanism that matches the access requirements of the server and provides the necessary credentials.

For information about how to determine the type of authentication your Hive server requires, see "Authentication Mechanisms" on page 51.

You can select the type of authentication to use for a connection by defining the AuthMech connection attribute in a connection string or in a DSN (in the odbc.ini file). Depending on the authentication mechanism you use, there might be additional connection attributes that you must define. For more information about the attributes involved in configuring authentication, see "Driver Configuration Options" on page 62.

Using No Authentication

When connecting to a Hive server of type Hive Server 1, you must use No Authentication. When you use No Authentication, Binary is the only Thrift transport protocol that is supported.

To configure a connection without authentication:
1. Set the AuthMech connection attribute to 0.
2. If the Hive server is configured to use SSL, then configure SSL for the connection. For more information, see "Configuring SSL Verification" on page 45.

Example connection string for Hive Server 1:

```
Driver=Hortonworks Hive ODBC Driver;Host=hs1_host;Port=hs1_port;HiveServerType=1;AuthMech=0;Schema=Hive_database
```

Example connection string for Hive Server 2:

```
Driver=Hortonworks Hive ODBC Driver;Host=hs2_host;Port=hs2_port;HiveServerType=2;AuthMech=0;Schema=Hive_database
```
Using Kerberos

Kerberos must be installed and configured before you can use this authentication mechanism. For more information, refer to the MIT Kerberos Documentation: http://web.mit.edu/kerberos/krb5-latest/doc/.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions. When you use Kerberos authentication, the Binary transport protocol is not supported.

**To configure Kerberos authentication:**

1. Set the `AuthMech` connection attribute to 1.
2. Choose one:
   - To use the default realm defined in your Kerberos setup, do not set the `KrbRealm` attribute.
   - Or, if your Kerberos setup does not define a default realm or if the realm of your Hive server is not the default, then set the appropriate realm using the `KrbRealm` attribute.
3. Set the `KrbHostFQDN` attribute to the fully qualified domain name of the Hive Server 2 host.
   **Note:**
   To use the Hive server host name as the fully qualified domain name for Kerberos authentication, set `KrbHostFQDN` to `_HOST`.
4. Set the `KrbServiceName` attribute to the service name of the Hive server.
5. To allow the driver to pass your credentials directly to the server for use in authentication, set `DelegateKrbCreds` to 1.
6. Set the `ThriftTransport` connection attribute to the transport protocol to use in the Thrift layer.
   **Important:**
   When using this authentication mechanism, Binary (`ThriftTransport=0`) is not supported.
7. If the Hive server is configured to use SSL, then configure SSL for the connection. For more information, see "Configuring SSL Verification" on page 45.

**Example connection string:**

```
Driver=Hortonworks Hive ODBC Driver;Host=hs2_host;
Port=hs2_port;HiveServerType=2;AuthMech=1;ThriftTransport=SASL;
Schema=Hive_database;KrbRealm=Kerberos_Realm;
KrbHostFQDN=hs2_fully_qualified_domain_name;
KrbServiceName=hs2_service_name
```
Using User Name

This authentication mechanism requires a user name but does not require a password. The user name labels the session, facilitating database tracking.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions. Most default configurations of Hive Server 2 require User Name authentication. When you use User Name authentication, SSL is not supported and SASL is the only Thrift transport protocol available.

To configure User Name authentication:
1. Set the AuthMech connection attribute to 2.
2. Set the UID attribute to an appropriate user name for accessing the Hive server.

Example connection string:

Driver=Hortonworks Hive ODBC Driver;Host=hs2_host;
Port=hs2_port;HiveServerType=2;AuthMech=2;
Schema=Hive_database;UID=user_name

Using User Name And Password

This authentication mechanism requires a user name and a password.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions.

To configure User Name And Password authentication:
1. Set the AuthMech connection attribute to 3.
2. Set the UID attribute to an appropriate user name for accessing the Hive server.
3. Set the PWD attribute to the password corresponding to the user name you provided above.
4. Set the ThriftTransport connection attribute to the transport protocol to use in the Thrift layer.
5. If the Hive server is configured to use SSL, then configure SSL for the connection. For more information, see "Configuring SSL Verification" on page 45.

Example connection string:

Driver=Hortonworks Hive ODBC Driver;Host=hs2_host;
Port=hs2_port;HiveServerType=2;AuthMech=3;ThriftTransport=SASL;
Schema=Hive_database;UID=user_name;PWD=password
Using Windows Azure HDInsight Service

This authentication mechanism is available only for Hive Server 2 on HDInsight distributions. When you use this authentication mechanism, you must enable SSL, and HTTP is the only Thrift transport protocol available.

To configure a connection to a Hive server on Windows Azure HDInsight Service:

1. Set the AuthMech connection attribute to 6.
2. Set the HTTPPath attribute to the partial URL corresponding to the Hive server.
3. Set the UID attribute to an appropriate user name for accessing the Hive server.
4. Set the PWD attribute to the password corresponding to the user name you typed above.
5. If necessary, you can create custom HTTP headers. For more information, see "http.-header." on page 84.
6. Configure SSL settings as needed. For more information, see "Configuring SSL Verification" on page 45.

Example connection string:

```
Driver=Hortonworks Hive ODBC Driver;
Host=Azure_HDInsight_Service_host;Port=443;
HiveServerType=2;AuthMech=6;SSL=1;Schema=Hive_database;
UID=user_name;PWD=password;HTTPPath=hs2_HTTP_path
```

Configuring SSL Verification

If you are connecting to a Hive server that has Secure Sockets Layer (SSL) enabled, you can configure the driver to connect to an SSL-enabled socket.

To configure SSL verification:

1. Open the odbc.ini configuration file in a text editor.
2. To enable SSL connections, set the SSL attribute to 1.
3. To allow self-signed certificates from the server, set the AllowSelfSignedServer-Cert attribute to 1.
4. To allow the common name of a CA-issued SSL certificate to not match the host name of the Hive server, set the CAIssuedCertNamesMismatch attribute to 1.
5. Choose one:
   - To configure the driver to load SSL certificates from a specific PEM file when verifying the server, set the TrustedCerts attribute to the full path of the PEM file.
   - Or, to use the trusted CA certificates PEM file that is installed with the driver, do not specify a value for the TrustedCerts attribute.
6. To configure two-way SSL verification, set the `TwoWaySSL` attribute to 1 and then do the following:
   a. Set the `ClientCert` attribute to the full path of the PEM file containing the client's certificate.
   b. Set the `ClientPrivateKey` attribute to the full path of the file containing the client's private key.
   c. If the private key file is protected with a password, set the `ClientPrivateKeyPassword` attribute to the password.

7. Save the `odbc.ini` configuration file.

### Configuring Server-Side Properties

You can use the driver to apply configuration properties to the Hive server. You can set these server-side properties in a DSN (in the `odbc.ini` file) or in a connection string.

**Important:**

If server-side properties are set in both the `odbc.ini` file and the connection string, the ones set in the connection string take precedence.

#### To configure server-side properties:

1. To set a server-side property, use the syntax `SSP_[SSPKey]=[SSPValue]`, where `[SSPKey]` is the name of the server-side property and `[SSPValue]` is the value to specify for that property. For example, to set the `mapreduce.job.queuename` property to `myQueue`, type the following:

   ```
   SSP_mapreduce.job.queuename=myQueue
   ```

   **Note:**
   - When setting a server-side property in a connection string, it is recommended that you enclose the value in braces `{}` to make sure that special characters can be properly escaped.
   - For a list of all Hadoop and Hive server-side properties that your implementation supports, type `set -v` at the Hive CLI command line or Beeline. You can also execute the `set -v` query after connecting using the driver.

2. To change the method that the driver uses to apply server-side properties, do one of the following:

   - To configure the driver to apply each server-side property by executing a query when opening a session to the Hive server, set the `ApplySSPWithQueries` property to 1.
   - Or, to configure the driver to use a more efficient method for applying server-side properties that does not involve additional network round-tripping, set the `ApplySSPWithQueries` property to 0.

   **Note:**
The more efficient method is not available for Hive Server 1, and it might not be compatible with some Hive Server 2 builds. If the server-side properties do not take effect when the `ApplySSPWithQueries` property is set to 0, then set it to 1.

3. To disable the driver's default behavior of converting server-side property key names to all lower-case characters, set the `LCaseSspKeyName` property to 0.

4. Save the `odbc.ini` configuration file.

## Configuring Logging Options

To help troubleshoot issues, you can enable logging in the driver.

**Important:**

Only enable logging long enough to capture an issue. Logging decreases performance and can consume a large quantity of disk space.

Use the `LogLevel` key to set the amount of detail included in log files. The following table lists the logging levels provided by the Hortonworks Hive ODBC Driver, in order from least verbose to most verbose.

<table>
<thead>
<tr>
<th>LogLevel Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disables all logging.</td>
</tr>
<tr>
<td>1</td>
<td>Logs severe error events that lead the driver to abort.</td>
</tr>
<tr>
<td>2</td>
<td>Logs error events that might allow the driver to continue running.</td>
</tr>
<tr>
<td>3</td>
<td>Logs potentially harmful situations.</td>
</tr>
<tr>
<td>4</td>
<td>Logs general information that describes the progress of the driver.</td>
</tr>
<tr>
<td>5</td>
<td>Logs detailed information that is useful for debugging the driver.</td>
</tr>
<tr>
<td>6</td>
<td>Logs all driver activity.</td>
</tr>
</tbody>
</table>

To enable logging:

1. Open the `hortonworks.hiveodbc.ini` configuration file in a text editor.

2. Set the `LogLevel` key to the desired level of information to include in log files. For example:

   LogLevel=2
3. Set the **LogPath** key to the full path to the folder where you want to save log files. For example:

   LogPath=/localhome/employee/Documents

4. Set the **LogFileCount** key to the maximum number of log files to keep.

   **Note:**
   After the maximum number of log files is reached, each time an additional file is created, the driver deletes the oldest log file.

5. Set the **LogFileSize** key to the maximum size of each log file in megabytes (MB).

   **Note:**
   After the maximum file size is reached, the driver creates a new file and continues logging.

6. Save the `hortonworks.hiveodbc.ini` configuration file.

7. Restart your ODBC application to make sure that the new settings take effect.

The Hortonworks Hive ODBC Driver produces a log file named `HiveODBC_driver.log` at the location you specify using the `LogPath` key.

**To disable logging:**

1. Open the `hortonworks.hiveodbc.ini` configuration file in a text editor.
2. Set the **LogLevel** key to 0.
3. Save the `hortonworks.hiveodbc.ini` configuration file.

**Testing the Connection**

To test the connection, you can use an ODBC-enabled client application. For a basic connection test, you can also use the test utilities that are packaged with your driver manager installation. For example, the iODBC driver manager includes simple utilities called `iodbctest` and `iodbctestw`. Similarly, the unixODBC driver manager includes simple utilities called `isql` and `iusql`.

**Using the iODBC Driver Manager**

You can use the `iodbctest` and `iodbctestw` utilities to establish a test connection with your driver. Use `iodbctest` to test how your driver works with an ANSI application, or use `iodbctestw` to test how your driver works with a Unicode application.

**Note:**
There are 32-bit and 64-bit installations of the iODBC driver manager available. If you have only one or the other installed, then the appropriate version of `iodbctest` (or `iodbctestw`) is available. However, if you have both 32- and 64-bit versions installed, then you need to make sure that you are running the version from the correct installation directory.

For more information about using the iODBC driver manager, see [http://www.iodbc.org](http://www.iodbc.org).
To test your connection using the iODBC driver manager:

1. Run `iodbctest` or `iodbctestw`.

2. Optionally, if you do not remember the DSN, then type a question mark (?) to see a list of available DSNs.

3. Type an ODBC connection string using the following format, specifying additional connection attributes as needed:

   ```
   DSN=[DataSourceName];[Key]=[Value]
   ```

   `[DataSourceName]` is the DSN that you are using for the connection. `[Key]` is any connection attribute that is not already specified as a configuration key in the DSN, and `[Value]` is the value for the attribute. Add key-value pairs to the connection string as needed, separating each pair with a semicolon (;).

   Or, If you are using a DSN-less connection, then type an ODBC connection string using the following format, specifying additional connection attributes as needed:

   ```
   Driver=[DriverNameOrFile];HOST=[MyHiveServer];PORT=[PortNumber];Schema=[DefaultSchema];HiveServerType=[ServerType]
   ```

   The placeholders in the connection string are defined as follows:

   - `[DriverNameOrFile]` is either the symbolic name of the installed driver defined in the `odbcinst.ini` file or the absolute path of the shared object file for the driver. If you use the symbolic name, then you must make sure that the `odbcinst.ini` file is configured to point the symbolic name to the shared object file. For more information, see "Specifying ODBC Drivers in odbcinst.ini" on page 40.
   - `[MyHiveServer]` is the IP address or hostname of the Hive Server.
   - `[PortNumber]` is the number of the TCP port that the Hive server uses to listen for client connections.
   - `[DefaultSchema]` is the database schema to use when a schema is not explicitly specified in a query.
   - `[ServerType]` is either 1 (for Hive Server 1) or 2 (for Hive Server 2).

If the connection is successful, then the `SQL>` prompt appears.

**Note:**
For information about the connection attributes that are available, see "Driver Configuration Options" on page 62.

**Using the unixODBC Driver Manager**

You can use the `isql` and `iusql` utilities to establish a test connection with your driver and your DSN. `isql` and `iusql` can only be used to test connections that use a DSN. Use `isql` to test
how your driver works with an ANSI application, or use iusql to test how your driver works with a Unicode application.

**Note:**
There are 32-bit and 64-bit installations of the unixODBC driver manager available. If you have only one or the other installed, then the appropriate version of isql (or iusql) is available. However, if you have both 32- and 64-bit versions installed, then you need to make sure that you are running the version from the correct installation directory.

For more information about using the unixODBC driver manager, see [http://www.unixodbc.org](http://www.unixodbc.org).

**To test your connection using the unixODBC driver manager:**

- Run isql or iusql by using the corresponding syntax:
  
  - `isql [DataSourceName]`
  - `iusql [DataSourceName]`

  `[DataSourceName]` is the DSN that you are using for the connection.

  If the connection is successful, then the `SQL>` prompt appears.

**Note:**
For information about the available options, run isql or iusql without providing a DSN.
Authentication Mechanisms

To connect to a Hive server, you must configure the Hortonworks Hive ODBC Driver to use the authentication mechanism that matches the access requirements of the server and provides the necessary credentials. To determine the authentication settings that your Hive server requires, check the server configuration and then refer to the corresponding section below.

Hive Server 1

You must use No Authentication as the authentication mechanism. Hive Server 1 instances do not support authentication.

Hive Server 2 on an HDInsight Distribution

If you are connecting to HDInsight Service running on Windows Azure, then you must use the Windows Azure HDInsight Service mechanism.

Hive Server 2 on a non-HDInsight Distribution

Note:
Most default configurations of Hive Server 2 on non-HDInsight distributions require User Name authentication.

Configuring authentication for a connection to a Hive Server 2 instance on a non-HDInsight Distribution involves setting the authentication mechanism, the Thrift transport protocol, and SSL support. To determine the settings that you need to use, check the following three properties in the hive-site.xml file in the Hive server that you are connecting to:

- `hive.server2.authentication`
- `hive.server2.transport.mode`
- `hive.server2.use.SSL`

Use the following table to determine the authentication mechanism that you need to configure, based on the `hive.server2.authentication` value in the `hive-site.xml` file:

<table>
<thead>
<tr>
<th><code>hive.server2.authentication</code></th>
<th>Authentication Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOSASL</td>
<td>No Authentication</td>
</tr>
<tr>
<td>KERBEROS</td>
<td>Kerberos</td>
</tr>
<tr>
<td>NONE</td>
<td>User Name</td>
</tr>
<tr>
<td>LDAP</td>
<td>User Name and Password</td>
</tr>
</tbody>
</table>
Use the following table to determine the Thrift transport protocol that you need to configure, based on the `hive.server2.authentication` and `hive.server2.transport.mode` values in the `hive-site.xml` file:

<table>
<thead>
<tr>
<th><code>hive.server2.authentication</code></th>
<th><code>hive.server2.transport.mode</code></th>
<th>Thrift Transport Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOSASL</td>
<td>binary</td>
<td>Binary</td>
</tr>
<tr>
<td>KERBEROS</td>
<td>binary or http</td>
<td>SASL or HTTP</td>
</tr>
<tr>
<td>NONE</td>
<td>binary or http</td>
<td>SASL or HTTP</td>
</tr>
<tr>
<td>LDAP</td>
<td>binary or http</td>
<td>SASL or HTTP</td>
</tr>
</tbody>
</table>

To determine whether SSL should be enabled or disabled for your connection, check the `hive.server2.use.SSL` value in the `hive-site.xml` file. If the value is true, then you must enable and configure SSL in your connection. If the value is false, then you must disable SSL in your connection.

For detailed instructions on how to configure authentication when using the Windows driver, see "Configuring Authentication" on page 12.

For detailed instructions on how to configure authentication when using a non-Windows driver, see "Configuring Authentication" on page 42.
Using a Connection String

For some applications, you might need to use a connection string to connect to your data source. For detailed information about how to use a connection string in an ODBC application, refer to the documentation for the application that you are using.

The connection strings in the following sections are examples showing the minimum set of connection attributes that you must specify to successfully connect to the data source. Depending on the configuration of the data source and the type of connection you are working with, you might need to specify additional connection attributes. For detailed information about all the attributes that you can use in the connection string, see "Driver Configuration Options" on page 62.

**DSN Connection String Example**

The following is an example of a connection string for a connection that uses a DSN:

```
DSN=[DataSourceName];
```

*[DataSourceName]* is the DSN that you are using for the connection.

You can set additional configuration options by appending key-value pairs to the connection string. Configuration options that are passed in using a connection string take precedence over configuration options that are set in the DSN.

**DSN-less Connection String Examples**

Some applications provide support for connecting to a data source using a driver without a DSN. To connect to a data source without using a DSN, use a connection string instead.

The placeholders in the examples are defined as follows, in alphabetical order:

- *[DomainName]* is the fully qualified domain name of the Hive server host.
- *[Namespace]* is the namespace on ZooKeeper under which Hive Server 2 znodes are added.
- *[PortNumber]* is the number of the TCP port that the Hive server uses to listen for client connections.
- *[Realm]* is the Kerberos realm of the Hive server host.
- *[Server]* is the IP address or host name of the Hive server to which you are connecting.
- *[ServerURL]* is the partial URL corresponding to the Hive server.
- *[ServiceName]* is the Kerberos service principal name of the Hive server.
- *[YourPassword]* is the password corresponding to your user name.
- *[YourUserName]* is the user name that you use to access the Hive server.
Connecting to a Hive Server 1 Instance

The following is the format of a DSN-less connection string that connects to a Hive Server 1 instance:

```
Driver=Hortonworks Hive ODBC Driver;HiveServerType=1;
Host=[Server];Port=[PortNumber];
```

For example:

```
Driver=Hortonworks Hive ODBC Driver;HiveServerType=1;
Host=192.168.222.160;Port=10000;
```

Connecting to a Standard Hive Server 2 Instance

The following is the format of a DSN-less connection string for a standard connection to a Hive Server 2 instance. By default, the driver is configured to connect to a Hive Server 2 instance that requires User Name authentication, and the driver uses **anonymous** as the user name.

```
Driver=Hortonworks Hive ODBC Driver;Host=[Server];
Port=[PortNumber];
```

For example:

```
Driver=Hortonworks Hive ODBC Driver;Host=192.168.222.160;
Port=10000;
```

Connecting using Dynamic Service Discovery

The following is the format of a DSN-less connection string that discovers Hive Server 2 services via the ZooKeeper service.

```
Driver=Hortonworks Hive ODBC Driver;ServiceDiscoveryMode=1;
Host=[Server1]:[PortNumber1], [Server2]:[PortNumber2], [Server3]:[PortNumber3];ZKNamespace=[Namespace];
```

For example:

```
Driver=Hortonworks Hive ODBC Driver;ServiceDiscoveryMode=1;
```

Connecting to a Hive Server 2 Instance Without Authentication

The following is the format of a DSN-less connection string that for a Hive Server 2 instance that does not require authentication.

```
Driver=Hortonworks Hive ODBC Driver;Host=[Server];
Port=[PortNumber];AuthMech=0;
```

For example:

```
Driver=Hortonworks Hive ODBC Driver;Host=192.168.222.160;
```
Port=10000;AuthMech=0;

Connecting to a Hive Server that Requires Kerberos Authentication

The following is the format of a DSN-less connection string that connects to a Hive Server 2 instance requiring Kerberos authentication:

Driver=Hortonworks Hive ODBC Driver;Host={[Server]};
Port={[PortNumber]};AuthMech=1;KrbRealm={[Realm]};
KrbHostFQDN={[DomainName]};KrbServiceName={[ServiceName]};

For example:
Driver=Hortonworks Hive ODBC Driver;Host=192.168.222.160;
Port=10000;AuthMech=1;KrbRealm=HORTONWORKS;
KrbHostFQDN=localhost.localdomain;KrbServiceName=hive;

Connecting to a Hive Server that Requires User Name And Password Authentication

The following is the format of a DSN-less connection string that connects to a Hive Server 2 instance requiring User Name And Password authentication:

Driver=Hortonworks Hive ODBC Driver;Host={[Server]};
Port={[PortNumber]};AuthMech=3;UID={[YourUserName]};
PWD={[YourPassword]};

For example:
Driver=Hortonworks Hive ODBC Driver;Host=192.168.222.160;
Port=10000;AuthMech=3;UID=hortonworks;PWD=hortonworks;

Connecting to a Hive Server on Windows Azure HDInsight Service

The following is the format of a DSN-less connection string that connects to a Hive Server 2 instance running on Windows Azure HDInsight Service:

Driver=Hortonworks Hive ODBC Driver;Host={[Server]};
Port={[PortNumber]};AuthMech=6;SSL=1;UID={[YourUserName]};
PWD={[YourPassword]};HTTPPath={[ServerURL]};

For example:
Driver=Hortonworks Hive ODBC Driver;Host=192.168.222.160;
Port=10000;AuthMech=6;SSL=1;UID=hortonworks;PWD=hortonworks;
HTTPPath=gateway/sandbox/hive;
Features

For more information on the features of the Hortonworks Hive ODBC Driver, see the following:

- "SQL Connector for HiveQL" on page 56
- "Data Types" on page 56
- "Catalog and Schema Support" on page 58
- "hive_system Table" on page 58
- "Server-Side Properties" on page 58
- "Get Tables With Query" on page 60
- "Active Directory" on page 60
- "Write-back" on page 60
- "Dynamic Service Discovery using ZooKeeper" on page 60

SQL Connector for HiveQL

The native query language supported by Hive is HiveQL. For simple queries, HiveQL is a subset of SQL-92. However, the syntax is different enough that most applications do not work with native HiveQL.

To bridge the difference between SQL and HiveQL, the SQL Connector feature translates standard SQL-92 queries into equivalent HiveQL queries. The SQL Connector performs syntactical translations and structural transformations. For example:

- **Quoted Identifiers**: The double quotes (" ") that SQL uses to quote identifiers are translated into back quotes (` `) to match HiveQL syntax. The SQL Connector needs to handle this translation because even when a driver reports the back quote as the quote character, some applications still generate double-quoted identifiers.

- **Table Aliases**: Support is provided for the AS keyword between a table reference and its alias, which HiveQL normally does not support.

- **JOIN, INNER JOIN, and CROSS JOIN**: SQL JOIN, INNER JOIN, and CROSS JOIN syntax is translated to HiveQL JOIN syntax.

- **TOP N/LIMIT**: SQL TOP N queries are transformed to HiveQL LIMIT queries.

Data Types

The Hortonworks Hive ODBC Driver supports many common data formats, converting between Hive data types and SQL data types.

The following table lists the supported data type mappings.
<table>
<thead>
<tr>
<th>Hive Type</th>
<th>SQL Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIGINT</td>
<td>SQL_BIGINT</td>
</tr>
<tr>
<td>BINARY</td>
<td>SQL_VARBINARY</td>
</tr>
<tr>
<td>BOOLEAN</td>
<td>SQL_BIT</td>
</tr>
<tr>
<td>CHAR(n)</td>
<td>SQL_CHAR</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> SQL_WCHAR is returned instead if the Unicode SQL Character Types configuration option (the UseUnicodeSqlCharacterTypes key) is enabled.</td>
</tr>
<tr>
<td>DATE</td>
<td>SQL_TYPE_DATE</td>
</tr>
<tr>
<td>DECIMAL</td>
<td>SQL_DECIMAL</td>
</tr>
<tr>
<td>DECIMAL(p,s)</td>
<td>SQL_DECIMAL</td>
</tr>
<tr>
<td>DOUBLE</td>
<td>SQL_DOUBLE</td>
</tr>
<tr>
<td>FLOAT</td>
<td>SQL_REAL</td>
</tr>
<tr>
<td>INT</td>
<td>SQL_INTEGER</td>
</tr>
<tr>
<td>SMALLINT</td>
<td>SQL_SMALLINT</td>
</tr>
<tr>
<td>STRING</td>
<td>SQL_VARCHAR</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> SQL_WVARCHAR is returned instead if the Unicode SQL Character Types configuration option (the UseUnicodeSqlCharacterTypes key) is enabled.</td>
</tr>
<tr>
<td>TIMESTAMP</td>
<td>SQL_TYPE_TIMESTAMP</td>
</tr>
<tr>
<td>TINYINT</td>
<td>SQL_TINYINT</td>
</tr>
<tr>
<td>VARCHAR(n)</td>
<td>SQL_VARCHAR</td>
</tr>
</tbody>
</table>

**Note:**
The aggregate types (ARRAY, MAP, and STRUCT) are not supported. Columns of aggregate types are treated as STRING columns.
The interval types (YEAR TO MONTH and DAY TIME) are supported only in query expressions and predicates. Interval types are not supported as column data types in tables.

**Catalog and Schema Support**

The Hortonworks Hive ODBC Driver supports both catalogs and schemas to make it easy for the driver to work with various ODBC applications. Since Hive only organizes tables into schemas/databases, the driver provides a synthetic catalog named HIVE under which all of the schemas/databases are organized. The driver also maps the ODBC schema to the Hive schema/database.

### hive_system Table

A pseudo-table called hive_system can be used to query for Hive cluster system environment information. The pseudo-table is under the pseudo-schema called hive_system. The table has two STRING type columns, envkey and envvalue. Standard SQL can be executed against the hive_system table. For example:

```sql
SELECT * FROM HIVE.hive_system.hive_system WHERE envkey LIKE '%hive%'
```

The above query returns all of the Hive system environment entries whose key contains the word "hive". A special query, `set -v`, is executed to fetch system environment information. Some versions of Hive do not support this query. For versions of Hive that do not support querying system environment information, the driver returns an empty result set.

**Server-Side Properties**

The Hortonworks Hive ODBC Driver allows you to set server-side properties via a DSN. Server-side properties specified in a DSN affect only the connection that is established using the DSN.

You can also specify server-side properties for connections that do not use a DSN. To do this, use the Hortonworks Hive ODBC Driver Configuration tool that is installed with the Windows version of the driver, or set the appropriate configuration options in your connection string or the hortonworks.hiveodbc.ini file. Properties specified in the driver configuration tool or the hortonworks.hiveodbc.ini file apply to all connections that use the Hortonworks Hive ODBC Driver.

For more information about setting server-side properties when using the Windows driver, see "Configuring Server-Side Properties" on page 19. For information about setting server-side properties when using the driver on a non-Windows platform, see "Driver Configuration Options" on page 62.

**Temporary Tables**

The driver supports the creation of temporary tables and lets you insert literal values into temporary tables. Temporary tables are only accessible by the ODBC connection that
created them, and are dropped when the connection is closed.

**CREATE TABLE Statement for Temporary Tables**

The driver supports the following DDL syntax for creating temporary tables:

```plaintext
<create table statement> ::= CREATE TABLE <temporary table name>
<left paren><column definition list><right paren>
<column definition list> ::= <column definition>[, <column definition>]*
<column definition> ::= <column name> <data type>
<temporary table name> ::= <double quote><number sign><table name><double quote>
<left paren> ::= ( 
<right paren> ::= )
<double quote> ::= " 
<number sign> ::= #
```

The following is an example of a SQL statement for creating a temporary table:

```
CREATE TABLE "#TEMPTABLE1" (C1 DATATYPE_1, C2 DATATYPE_2, ..., Cn DATATYPE_n)
```

The temporary table name in a SQL query must be surrounded by double quotes ("), and the name must begin with a number sign (#).

**Note:**

You can only use data types that are supported by Hive.

**INSERT Statement for Temporary Tables**

The driver supports the following DDL syntax for inserting data into temporary tables:

```plaintext
<insert statement> ::= INSERT INTO <temporary table name> <left paren><column name list><right paren> VALUES <left paren><literal value list><right paren>
<column name list> ::= <column name>[, <column name>]*
<literal value list> ::= <literal value>[, <literal value>]*
<temporary table name> ::= <double quote><number sign><table name><double quote>
<left paren> ::= ( 
<right paren> ::= )
<double quote> ::= " 
<number sign> ::= #
```
The following is an example of a SQL statement for inserting data into temporary tables:

```sql
INSERT INTO "#TEMPTABLE1" values (VAL(C1), VAL(C2) ... VAL(Cn) )
```

VAL(C1) is the literal value for the first column in the table, and VAL(Cn) is the literal value for the nth column in the table.

**Note:**
The INSERT statement is only supported for temporary tables.

### Get Tables With Query

The Get Tables With Query configuration option allows you to choose whether to use the SHOW TABLES query or the GetTables API call to retrieve table names from a database.

Hive Server 2 has a limit on the number of tables that can be in a database when handling the GetTables API call. When the number of tables in a database is above the limit, the API call will return a stack overflow error or a timeout error. The exact limit and the error that appears depends on the JVM settings.

As a workaround for this issue, enable the Get Tables with Query configuration option or the GetTablesWithQuery key to use the query instead of the API call.

### Active Directory

The Hortonworks Hive ODBC Driver supports Active Directory Kerberos on Windows. There are two prerequisites for using Active Directory Kerberos on Windows:

- MIT Kerberos is not installed on the client Windows machine.
- The MIT Kerberos Hadoop realm has been configured to trust the Active Directory realm so that users in the Active Directory realm can access services in the MIT Kerberos Hadoop realm. For more information, see "Setting up One-Way Trust with Active Directory" in the Hortonworks documentation:

  [http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.7/bk_installing_manualy_book/content/ch23s05.html](http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.7/bk_installing_manualy_book/content/ch23s05.html)

### Write-back

The Hortonworks Hive ODBC Driver supports translation for INSERT, UPDATE, and DELETE syntax when connecting to a Hive Server 2 instance that is running Hive 0.14 or later.

### Dynamic Service Discovery using ZooKeeper

The Hortonworks Hive ODBC Driver can be configured to discover Hive Server 2 services via the ZooKeeper service.

For information about configuring this feature in the Windows driver, see "Creating a Data Source Name" on page 7 or "Configuring a DSN-less Connection" on page 10.
information about configuring this feature when using the driver on a non-Windows platform, see "Configuring Service Discovery Mode" on page 41.
Driver Configuration Options

Driver Configuration Options lists the configuration options available in the Hortonworks Hive ODBC Driver alphabetically by field or button label. Options having only key names, that is, not appearing in the user interface of the driver, are listed alphabetically by key name.

When creating or configuring a connection from a Windows machine, the fields and buttons are available in the Hortonworks Hive ODBC Driver Configuration tool and the following dialog boxes:

- Hortonworks Hive ODBC Driver DSN Setup
- Advanced Options
- Server Side Properties
- SSL Options
- HTTP Properties

When using a connection string or configuring a connection from a Linux/Mac OS X/Debian machine, use the key names provided.

Note:
You can pass in configuration options in your connection string, or set them in your odbc.ini and hortonworks.hiveodbc.ini files if you are using a non-Windows version of the driver. Configuration options set in a hortonworks.hiveodbc.ini file apply to all connections, whereas configuration options passed in in the connection string or set in an odbc.ini file are specific to a connection. Configuration options passed in using the connection string take precedence over configuration options set in odbc.ini. Configuration options set in odbc.ini take precedence over configuration options set in hortonworks.hiveodbc.ini.

Configuration Options Appearing in the User Interface

The following configuration options are accessible via the Windows user interface for the Hortonworks Hive ODBC Driver, or via the key name when using a connection string or configuring a connection from a Linux/Mac OS X/Debian machine:

- "Allow Common Name Host Name Mismatch" on page 63
- "Allow Self-Signed Server Certificate" on page 64
- "Apply Properties with Queries" on page 64
- "Async Exec Poll Interval" on page
- "HTTP Path" on page 72
- "Invalid Session Auto Recover" on page 72
- "Log Level" on page 73
- "Log Path" on page 74
- "Max File Size" on page 74
- "Max Number Files" on page 74
Allow Common Name Host Name Mismatch

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAIssuedCertNamesMismatch</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>
Description

This option specifies whether a CA-issued SSL certificate name must match the host name of the Hive server.

- Enabled (1): The driver allows a CA-issued SSL certificate name to not match the host name of the Hive server.
- Disabled (0): The CA-issued SSL certificate name must match the host name of the Hive server.

Note:
This setting is applicable only when SSL is enabled.

Allow Self-Signed Server Certificate

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>AllowSelfSignedServerCert</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies whether the driver allows self-signed certificates from the server.

- Enabled (1): The driver authenticates the Hive server even if the server is using a self-signed certificate.
- Disabled (0): The driver does not allow self-signed certificates from the server.

Note:
This setting is applicable only when SSL is enabled.

Apply Properties with Queries

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApplySSPWithQueries</td>
<td>Selected (1)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies how the driver applies server-side properties.

- Enabled (1): The driver applies each server-side property by executing a `set SSPKey=SSPValue` query when opening a session to the Hive server.
- Disabled (0): The driver uses a more efficient method for applying server-side properties that does not involve additional network round-tripping. However, some Hive Server 2 builds are not compatible with the more efficient method.

Note:
When connecting to a Hive Server 1 instance, this option is always enabled.

**Async Exec Poll Interval**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>AsyncExecPollInterval</td>
<td>100</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

The time in milliseconds between each poll for the query execution status.

"Asynchronous execution" refers to the fact that the RPC call used to execute a query against Hive is asynchronous. It does not mean that ODBC asynchronous operations are supported.

**Note:**
This option is applicable only to HDInsight clusters.

**Binary Column Length**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>BinaryColumnLength</td>
<td>32767</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

The maximum data length for BINARY columns.

By default, the columns metadata for Hive does not specify a maximum data length for BINARY columns.

**Client Certificate File**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClientCert</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

The full path to the .pem file containing the client’s SSL certificate.

**Note:**
This setting is applicable only when two-way SSL is enabled.
### Client Private Key File

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClientPrivateKey</td>
<td>None</td>
<td>Yes, if two-way SSL verification is enabled.</td>
</tr>
</tbody>
</table>

**Description**

The full path to the `.pem` file containing the client's SSL private key.

If the private key file is protected with a password, then provide the password using the driver configuration option "Client Private Key Password" on page 66.

**Note:**
This setting is applicable only when two-way SSL is enabled.

### Client Private Key Password

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClientPrivateKeyPassword</td>
<td>None</td>
<td>Yes, if two-way SSL verification is enabled and the client's private key file is protected with a password.</td>
</tr>
</tbody>
</table>

**Description**

The password of the private key file that is specified in the Client Private Key File field (ClientPrivateKey).

### Convert Key Name to Lower Case

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCaseSspKeyName</td>
<td>Selected (1)</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

This option specifies whether the driver converts server-side property key names to all lower-case characters.
- **Enabled (1):** The driver converts server-side property key names to all lower-case characters.
- **Disabled (0):** The driver does not modify the server-side property key names.

### Data File HDFS Dir

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDFSTempTableDir</td>
<td>/tmp/simba</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

The HDFS directory that the driver uses to store the necessary files for supporting the Temporary Table feature.

**Note:**
Due to a problem in Hive (see [https://issues.apache.org/jira/browse/HIVE-4554](https://issues.apache.org/jira/browse/HIVE-4554)), HDFS paths with space characters do not work with versions of Hive prior to 0.12.0.

This option is not applicable when connecting to Hive 0.14 or later.

### Database

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema</td>
<td>default</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

The name of the database schema to use when a schema is not explicitly specified in a query. You can still issue queries on other schemas by explicitly specifying the schema in the query.

**Note:**
To inspect your databases and determine the appropriate schema to use, at the Hive command prompt, type `show databases`.

### Decimal Column Scale

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>DecimalColumnScale</td>
<td>10</td>
<td>No</td>
</tr>
</tbody>
</table>
**Default String Column Length**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default StringColumnLength</td>
<td>255</td>
<td>No</td>
</tr>
</tbody>
</table>

**Delegate Kerberos Credentials**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>DelegateKrbCreds</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>

**Delegation UID**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>DelegationUID</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>
This option is applicable only when connecting to a Hive Server 2 instance that supports this feature.

**Driver Config Take Precedence**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>DriverConfigTakePrecedence</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

This option specifies whether driver-wide configuration settings take precedence over connection and DSN settings.

- Enabled (1): Driver-wide configurations take precedence over connection and DSN settings.
- Disabled (0): Connection and DSN settings take precedence instead.

**Enable SSL**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

This option specifies whether the client verifies the Hive server using SSL.

- Enabled (1): The client verifies the Hive server using SSL.
- Disabled (0): SSL is disabled.

SSL is configured independently of authentication. When authentication and SSL are both enabled, the driver performs the specified authentication method over an SSL connection.

**Note:**

This option is applicable only when connecting to a Hive server that supports SSL.

**Enable Temporary Table**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnableTempTable</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>
Description

This option specifies whether the driver supports the creation and use of temporary tables.

- Enabled (1): The driver supports the creation and use of temporary tables.
- Disabled (0): The driver does not support temporary tables.

Important:
When connecting to Hive 0.14 or later, the Temporary Tables feature is always enabled and you do not need to configure it in the driver.

Fast SQLPrepare

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastSQLPrepare</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies whether the driver defers query execution to SQLExecute.

- Enabled (1): The driver defers query execution to SQLExecute.
- Disabled (0): The driver does not defer query execution to SQLExecute.

Note:
When using Native Query mode, the driver executes the HiveQL query to retrieve the result set metadata for SQLPrepare. As a result, SQLPrepare might be slow. If the result set metadata is not required after calling SQLPrepare, then enable Fast SQLPrepare.

Get Tables With Query

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetTablesWithQuery</td>
<td>Selected (1)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies whether the driver uses the SHOW TABLES query or the GetTables Thrift API call to retrieve table names from the database.

- Enabled (1): The driver uses the SHOW TABLES query to retrieve table names.
- Disabled (0): The driver uses the GetTables Thrift API call to retrieve table names.

Note:
This option is applicable only when connecting to a Hive Server 2 instance.
HDFS User

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDFSUser</td>
<td>hdfs</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The name of the HDFS user that the driver uses to create the necessary files for supporting the Temporary Tables feature.

This option is not applicable when connecting to Hive 0.14 or later.

Hive Server Type

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>HiveServerType</td>
<td>Hive Server 2 (2)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies the type of Hive server.

- Hive Server 1 (1): The driver connects to a Hive Server 1 instance.
- Hive Server 2 (2): The driver connects to a Hive Server 2 instance.

Note:
If Service Discovery Mode is enabled, then connections to Hive Server 1 are not supported.

Host(s)

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOST</td>
<td>None</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Description

If Service Discovery Mode is disabled, specify the IP address or host name of the Hive server.

If Service Discovery Mode is enabled, specify a comma-separated list of ZooKeeper servers in the following format, where [ZK_Host] is the IP address or host name of the ZooKeeper server and [ZK_Prot] is the number of the TCP port that the ZooKeeper server uses to listen for client connections:

[ZK_Host1]:[ZK_Port1],[ZK_Host2]:[ZK_Port2]
### Host FQDN

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>KrbHostFQDN</td>
<td>None</td>
<td>Yes, if the authentication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mechanism is Kerberos.</td>
</tr>
</tbody>
</table>

**Description**

The fully qualified domain name of the Hive Server 2 host.

You can set the value of Host FQDN to `HOST` to use the Hive server host name as the fully qualified domain name for Kerberos authentication. If Service Discovery Mode is disabled, then the driver uses the value specified in the Host connection attribute. If Service Discovery Mode is enabled, then the driver uses the Hive Server 2 host name returned by ZooKeeper.

### HTTP Path

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPPath</td>
<td>/hive2 if using Windows Azure HDInsight Service (6).</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>/ if using non-Windows Azure HDInsight Service with Thrift Transport set to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HTTP (2).</td>
<td></td>
</tr>
</tbody>
</table>

**Description**

The partial URL corresponding to the Hive server.

The driver forms the HTTP address to connect to by appending the HTTP Path value to the host and port specified in the DSN or connection string. For example, to connect to the HTTP address `http://localhost:10002/gateway/sandbox/hive/version`, you would set HTTP Path to `/gateway/sandbox/hive/version`.

**Note:**

By default, Hive servers use `cliservice` as the partial URL.

### Invalid Session Auto Recover

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>InvalidSessionAutoRecover</td>
<td>Selected (1)</td>
<td>No</td>
</tr>
</tbody>
</table>

**Note:**

By default, Hive servers use `cliservice` as the partial URL.
Description

This option specifies whether the driver automatically opens a new session when the existing session is no longer valid.

- **Enabled (1)**: The driver automatically opens a new session when the existing session is no longer valid.
- **Disabled (0)**: The driver does not automatically open new sessions.

**Note:**
This option is applicable only when connecting to Hive Server 2.

**Log Level**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogLevel</td>
<td>OFF (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

Use this property to enable or disable logging in the driver and to specify the amount of detail included in log files.

**Important:**
- Only enable logging long enough to capture an issue. Logging decreases performance and can consume a large quantity of disk space.
- This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the `hortonworks.hiveodbc.ini` file.

Set the property to one of the following values:

- **OFF (0)**: Disable all logging.
- **FATAL (1)**: Logs severe error events that lead the driver to abort.
- **ERROR (2)**: Logs error events that might allow the driver to continue running.
- **WARNING (3)**: Logs potentially harmful situations.
- **INFO (4)**: Logs general information that describes the progress of the driver.
- **DEBUG (5)**: Logs detailed information that is useful for debugging the driver.
- **TRACE (6)**: Logs all driver activity.

When logging is enabled, the driver produces a log file named `HiveODBC_driver.log` in the location specified in the Log Path (`LogPath`) property.
Log Path

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogPath</td>
<td>None</td>
<td>Yes, if logging is enabled.</td>
</tr>
</tbody>
</table>

**Description**

The full path to the folder where the driver saves log files when logging is enabled.

**Important:**
This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the `hortonworks.hiveodbc.ini` file.

Max File Size

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogFileSize</td>
<td>20</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

The maximum size of each log file in megabytes (MB). After the maximum file size is reached, the driver creates a new file and continues logging.

**Important:**
This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the `hortonworks.hiveodbc.ini` file.

Max Number Files

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogFileCount</td>
<td>50</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

The maximum number of log files to keep. After the maximum number of log files is reached, each time an additional file is created, the driver deletes the oldest log file.

**Important:**
This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the `hortonworks.hiveodbc.ini` file.

**Mechanism**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuthMech</td>
<td>No Authentication (0) if you are connecting to Hive Server 1. User Name (2) if you are connecting to Hive Server 2.</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

The authentication mechanism to use.

Select one of the following settings, or set the key to the corresponding number:

- No Authentication (0)
- Kerberos (1)
- User Name (2)
- User Name And Password (3)
- Windows Azure HDInsight Service (6)

**Password**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWD</td>
<td>None</td>
<td>Yes, if the authentication mechanism is User Name And Password (3) or Windows Azure HDInsight Service (6).</td>
</tr>
</tbody>
</table>

**Description**

The password corresponding to the user name that you provided in the User Name field (the UID key).
Port

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
</table>
| PORT     | • non-HDInsight clusters: 10000  
          | • Windows Azure HDInsight Service: 443 | Yes, if Service Discovery Mode is disabled. |

Description
The number of the TCP port that the Hive server uses to listen for client connections.

Realm

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>KrbRealm</td>
<td>Depends on your Kerberos configuration.</td>
<td>No</td>
</tr>
</tbody>
</table>

Description
The realm of the Hive Server 2 host.

If your Kerberos configuration already defines the realm of the Hive Server 2 host as the default realm, then you do not need to configure this option.

Rows Fetched Per Block

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>RowsFetchedPerBlock</td>
<td>10000</td>
<td>No</td>
</tr>
</tbody>
</table>

Description
The maximum number of rows that a query returns at a time.

Valid values for this setting include any positive 32-bit integer. However, testing has shown that performance gains are marginal beyond the default value of 10000 rows.
Save Password (Encrypted)

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Selected (1)</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

This option specifies whether the password is saved in the registry.
- **Enabled (1):** The password is saved in the registry.
- **Disabled (0):** The password is not saved in the registry.

This option is available only in the Windows driver. It appears in the Hortonworks Hive ODBC Driver DSN Setup dialog box and the SSL Options dialog box.

**Important:**
The password is obscured (not saved in plain text). However, it is still possible for the encrypted password to be copied and used.

**Service Discovery Mode**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServiceDiscoveryMode</td>
<td>No Service Discovery (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

This option specifies whether the driver uses the ZooKeeper service.
- **Enabled (1):** The driver discovers Hive Server 2 services via the ZooKeeper service.
- **Disabled (0):** The driver connects to Hive without using the ZooKeeper service.

**Service Name**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>KrbServiceName</td>
<td>None</td>
<td>Yes, if the authentication mechanism is Kerberos.</td>
</tr>
</tbody>
</table>

**Description**
The Kerberos service principal name of the Hive server.
Show System Table

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShowSystemTable</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies whether the driver returns the hive_system table for catalog function calls such as SQLTables and SQLColumns.

- **Enabled (1):** The driver returns the hive_system table for catalog function calls such as SQLTables and SQLColumns.
- **Disabled (0):** The driver does not return the hive_system table for catalog function calls.

Socket Timeout

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>SocketTimeout</td>
<td>60</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The number of seconds that an operation can remain idle before it is closed.

**Note:**

This option is applicable only when asynchronous query execution is being used against Hive Server 2 instances.

Temp Table TTL

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>TempTableTTL</td>
<td>10</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The number of minutes a temporary table is guaranteed to exist in Hive after it is created.

This option is not applicable when connecting to Hive 0.14 or later.
Thrift Transport

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ThriftTransport</td>
<td>Binary (0) if you are connecting to Hive Server 1. SASL (1) if you are connecting to Hive Server 2.</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The transport protocol to use in the Thrift layer.

Select one of the following settings, or set the key to the number corresponding to the desired setting:

- Binary (0)
- SASL (1)
- HTTP (2)

Trusted Certificates

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>TrustedCerts</td>
<td>The cacerts.pem file in the \lib subfolder within the driver's installation directory. The exact file path varies depending on the version of the driver that is installed. For example, the path for the Windows driver is different from the path for the Mac OS X driver.</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

The full path of the .pem file containing trusted CA certificates for verifying the server when using SSL.

If this option is not set, then the driver defaults to using the trusted CA certificates .pem file installed by the driver.
Note:
This setting is applicable only when SSL is enabled.

Two Way SSL

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>TwoWaySSL</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description
This option specifies whether two-way SSL is enabled.

- Enabled (1): The client and the Hive server verify each other using SSL. See also the driver configuration options "Client Certificate File" on page 65, "Client Private Key File" on page 66, and "Client Private Key Password" on page 66.
- Disabled (0): The server does not verify the client. Depending on whether one-way SSL is enabled, the client might verify the server. For more information, see "Enable SSL" on page 69.

Note:
This option is applicable only when connecting to a Hive server that supports SSL. You must enable SSL before Two Way SSL can be configured. For more information, see "Enable SSL" on page 69.

Unicode SQL Character Types

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseUnicodeSqlCharacterTypes</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description
This option specifies the SQL types to be returned for string data types.

- Enabled (1): The driver returns SQL_WVARCHAR for STRING and VARCHAR columns, and returns SQL_WCHAR for CHAR columns.
- Disabled (0): The driver returns SQL_VARCHAR for STRING and VARCHAR columns, and returns SQL_CHAR for CHAR columns.

Use Async Exec

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnableAsyncExec</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>
Description

This option specifies whether to execute queries synchronously or asynchronously.

- **Enabled (1)**: The driver uses an asynchronous version of the API call against Hive for executing a query.
- **Disabled (0)**: The driver executes queries synchronously.

Due to a problem in Hive 0.12.0 (see [https://issues.apache.org/jira/browse/HIVE-5230](https://issues.apache.org/jira/browse/HIVE-5230)), Hive returns generic error messages for errors that occur during query execution. To see the actual error message relevant to the problem, turn off asynchronous query execution and execute the query again.

**Note:**
This option only takes effect when connecting to a Hive cluster running Hive 0.12.0 or higher.

Use Native Query

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseNativeQuery</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies whether the driver uses native HiveQL queries, or converts them into an equivalent form in HiveQL.

- **Enabled (1)**: The driver does not transform the queries emitted by an application, and executes HiveQL queries directly.
- **Disabled (0)**: The driver transforms the queries emitted by an application and converts them into an equivalent form in HiveQL.

**Note:**
If the application is Hive-aware and already emits HiveQL, then enable this option to avoid the extra overhead of query transformation.

Use Only SSPI Plugin

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>UseOnlySSPI</td>
<td>Clear (0)</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

This option specifies how the driver handles Kerberos authentication: either with the SSPI plugin or with MIT Kerberos.
Enabled (1): The driver handles Kerberos authentication by using the SSPI plugin instead of MiKerberos by default.

Disabled (0): The driver uses MIT Kerberos to handle Kerberos authentication, and only uses the SSPI plugin if the gssapi library is not available.

**Important:**
This option is available only in the Windows driver.

**User Name**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>For User Name (2) authentication only, the default value is anonymous</td>
<td>Yes, if the authentication mechanism is User Name And Password (3) or Windows Azure HDInsight Service (6). No, if the authentication mechanism is User Name (2).</td>
</tr>
</tbody>
</table>

**Description**
The user name that you use to access Hive Server 2.

**Web HDFS Host**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebHDFSHost</td>
<td>The Hive server host.</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**
The host name or IP address of the machine hosting both the namenode of your Hadoop cluster and the WebHDFS service.

This option is not applicable when connecting to Hive 0.14 or later.

**Web HDFS Port**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebHDFSPort</td>
<td>50070</td>
<td>No</td>
</tr>
</tbody>
</table>
The WebHDFS port for the namenode.

This option is not applicable when connecting to Hive 0.14 or later.

**ZooKeeper Namespace**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZKNamespace</td>
<td>None</td>
<td>Yes, if Service Discovery Mode is enabled.</td>
</tr>
</tbody>
</table>

The namespace on ZooKeeper under which Hive Server 2 znodes are added.

**Configuration Options Having Only Key Names**

The following configuration options do not appear in the Windows user interface for the Hortonworks Hive ODBC Driver. They are accessible only when you use a connection string or configure a connection from a Linux/Mac OS X/Debian machine:

- "ADUserNameCase" on page 83
- "Driver" on page 84
- "ForceSynchronousExec" on page 84
- "http.header." on page 84
- "SSP_ " on page 85

**ADUserNameCase**

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADUserNameCase</td>
<td>Unchanged</td>
<td>No</td>
</tr>
</tbody>
</table>

This option controls whether the driver changes the user name part of an AD Kerberos UPN to all upper-case or all lower-case. The following values are possible:

- **Upper**: Change the user name to all upper-case.
- **Lower**: Change the user name to all lower-case.
- **Unchanged**: Do not modify the user name.

**Note:**
This option is applicable only when using Active Directory Kerberos from a Windows client machine to authenticate.

### Driver

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver</td>
<td>Hortonworks Hive ODBC Driver when installed on Windows, or the absolute path of the driver shared object file when installed on a non-Windows machine.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

**Description**

The name of the installed driver (Hortonworks Hive ODBC Driver) when installed on Windows, or the absolute path of the driver shared object file when installed on a non-Windows machine.

### ForceSynchronousExec

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>ForceSynchronousExec</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>

**Description**

When this option is enabled (1), the driver is forced to execute queries synchronously when connected to an HDInsight cluster.

When this option is disabled (0), the driver is able to execute queries asynchronously when connected to an HDInsight cluster.

**Note:**

This option is applicable only to HDInsight clusters.

### http.header

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>http.header</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>
Description

Set a custom HTTP header by using the following syntax, where \([\text{HeaderKey}]\) is the name of the header to set and \([\text{HeaderValue}]\) is the value to assign to the header:

\[
\text{http.header.}\ [\text{HeaderKey}]= [\text{HeaderValue}]
\]

For example:

\[
\text{http.header.AUTHENTICATED\_USER}= \text{john}
\]

After the driver applies the header, the http.header. prefix is removed from the DSN entry, leaving an entry of \([\text{HeaderKey}]= [\text{HeaderValue}]\)

The example above would create the following custom HTTP header:

\[
\text{AUTHENTICATED\_USER}: \text{john}
\]

Note:
The http.header. prefix is case-sensitive. This option is applicable only when you are using HTTP as the Thrift transport protocol. For more information, see “Thrift Transport” on page 79.

SSP_

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Default Value</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP_</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

Description

Set a server-side property by using the following syntax, where \([\text{SSPKey}]\) is the name of the server-side property and \([\text{SSPValue}]\) is the value for that property:

\[
\text{SSP_}\ [\text{SSPKey}]= [\text{SSPValue}]
\]

For example:

\[
\text{SSP\_mapred.queue.names}= \text{myQueue}
\]

After the driver applies the server-side property, the SSP_ prefix is removed from the DSN entry, leaving an entry of \([\text{SSPKey}]= [\text{SSPValue}]\).

Note:
- The SSP_ prefix must be upper case.
- When setting a server-side property in a connection string, it is recommended that you enclose the value in braces (\{ \}) to make sure that special characters can be properly escaped.
Third-Party Trademarks

Debian is a trademark or registered trademark of Software in the Public Interest, Inc. or its subsidiaries in Canada, United States and/or other countries.

Kerberos is a trademark of the Massachusetts Institute of Technology (MIT).

Linux is the registered trademark of Linus Torvalds in Canada, United States and/or other countries.

Microsoft, MSDN, Windows, Windows Azure, Windows Server, Windows Vista, and the Windows start button are trademarks or registered trademarks of Microsoft Corporation or its subsidiaries in Canada, United States and/or other countries.

Red Hat, Red Hat Enterprise Linux, and CentOS are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in Canada, United States and/or other countries.

Ubuntu is a trademark or registered trademark of Canonical Ltd. or its subsidiaries in Canada, United States and/or other countries.

Apache Hive, Apache, and Hive are trademarks or registered trademarks of The Apache Software Foundation or its subsidiaries in Canada, United States and/or other countries.

All other trademarks are trademarks of their respective owners.
Third-Party Licenses

The licenses for the third-party libraries that are included in this product are listed below.

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

cURL License

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1996 - 2015, Daniel Stenberg, daniel@haxx.se.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.

**Cyrus SASL License**

Copyright (c) 1994-2012 Carnegie Mellon University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. The name "Carnegie Mellon University" must not be used to endorse or promote products derived from this software without prior written permission. For permission or any other legal details, please contact
   Office of Technology Transfer
   Carnegie Mellon University
   5000 Forbes Avenue
   Pittsburgh, PA 15213-3890
   (412) 268-4387, fax: (412) 268-7395
   tech-transfer@andrew.cmu.edu
4. Redistributions of any form whatsoever must retain the following acknowledgment:

   "This product includes software developed by Computing Services at Carnegie Mellon University ([http://www.cmu.edu/computing/](http://www.cmu.edu/computing/))."

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

**dtoa License**

The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided that this entire notice is included in all copies of any software
which is or includes a copy or modification of this software and in all copies of the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

Expat License

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2014 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their respective owners.

OpenSSL License

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgment:

   "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products derived from this software without prior written permission. For written permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior written permission of the OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following acknowledgment:

   "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

Architecting the Future of Big Data
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are heared to. The following conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric Young should be given attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup or in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement:

"This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the routines from the library being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include an acknowledgement:

"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publicly available version or derivative of this code cannot be changed. i.e. this code cannot simply be copied and put under another distribution licence [including the GNU Public Licence.]

RapidJSON License

Tencent is pleased to support the open source community by making RapidJSON available.

Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved.

If you have downloaded a copy of the RapidJSON binary from Tencent, please note that the RapidJSON binary is licensed under the MIT License.

If you have downloaded a copy of the RapidJSON source code from Tencent, please note that RapidJSON source code is licensed under the MIT License, except for the third-party components listed below which are subject to different license terms. Your integration of RapidJSON into your own projects may require compliance with the MIT License, as well as the other licenses applicable to the third-party components included within RapidJSON.

A copy of the MIT License is included in this file.

Other dependencies and licenses:

Open Source Software Licensed Under the BSD License:

The msinttypes r29
Copyright (c) 2006-2013 Alexander Chemeris
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ´AS IS´ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Open Source Software Licensed Under the JSON License:

json.org
Copyright (c) 2002 JSON.org
All Rights Reserved.

JSON_checker
Copyright (c) 2002 JSON.org
All Rights Reserved.

Terms of the JSON License:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
The Software shall be used for Good, not Evil.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Terms of the MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Stringencoders License

Copyright 2005, 2006, 2007

Nick Galbreath -- nickg [at] modp [dot] com

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the modp.com nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This is the standard "new" BSD license:

http://www.opensource.org/licenses/bsd-license.php

zlib License

Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly          Mark Adler
jloup@gzip.org            madler@alumni.caltech.edu
Apache License, Version 2.0

The following notice is included in compliance with the Apache License, Version 2.0 and is applicable to all software licensed under the Apache License, Version 2.0.

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
   
   (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

   (b) You must cause any modified files to carry prominent notices stating that You changed the files; and

   (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and

   (d) If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

This product includes software that is licensed under the Apache License, Version 2.0 (listed below):

**Apache Hive**
Copyright © 2008-2015 The Apache Software Foundation

**Apache Thrift**
Copyright © 2006-2010 The Apache Software Foundation

**Apache ZooKeeper**
Copyright © 2010 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.